Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Roots === Let <math>a</math> be a positive element of a C*-algebra {{nowrap|<math>\mathcal{A}</math>.}} Then for every <math>n \in \mathbb{N}</math> there exists a uniquely determined positive element <math>b \in \mathcal{A}_+</math> with <math>b^n =a</math>, i.e. a unique <math>n</math>-th {{nowrap|root.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}} ''Proof.'' For each <math>n \in \mathbb{N}</math>, the root function <math>f_n \colon \R_0^+ \to \R_0^+, x \mapsto \sqrt[n]x</math> is a continuous function on {{nowrap|<math>\sigma (a) \subseteq \R_0^+</math>.}} If <math>b \; \colon = f_n (a)</math> is defined using the continuous functional calculus, then <math>b^n = (f_n(a))^n = (f_n^n)(a) = \operatorname{Id}_{\sigma(a)}(a)=a</math> follows from the properties of the calculus. From the spectral mapping theorem follows <math>\sigma(b) = \sigma(f_n(a)) = f_n(\sigma(a)) \subseteq [0,\infty)</math>, i.e. <math>b</math> is {{nowrap|positive.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}} If <math>c \in \mathcal{A}_+</math> is another positive element with <math>c^n = a = b^n</math>, then <math>c = f_n (c^n) = f_n(b^n) = b</math> holds, as the root function on the positive real numbers is an inverse function to the function {{nowrap|<math>z \mapsto z^n</math>.{{sfn|Kadison|Ringrose|1983|p=275}}}} If <math>a \in \mathcal{A}_{sa}</math> is a self-adjoint element, then at least for every odd <math>n \in \N</math> there is a uniquely determined self-adjoint element <math>b \in \mathcal{A}_{sa}</math> with {{nowrap|<math>b^n = a</math>.{{sfn|Blackadar|2006|p=63}}}} Similarly, for a positive element <math>a</math> of a C*-algebra <math>\mathcal{A}</math>, each <math>\alpha \geq 0</math> defines a uniquely determined positive element <math>a^\alpha</math> of <math>C^*(a)</math>, such that <math>a^\alpha a^\beta = a^{\alpha + \beta}</math> holds for all {{nowrap|<math>\alpha, \beta \geq 0</math>.}} If <math>a</math> is invertible, this can also be extended to negative values of {{nowrap|<math>\alpha</math>.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)