Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuum hypothesis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Implications of GCH for cardinal exponentiation=== Although the generalized continuum hypothesis refers directly only to cardinal exponentiation with 2 as the base, one can deduce from it the values of cardinal exponentiation <math>\aleph_{\alpha}^{\aleph_{\beta}}</math> in all cases. GCH implies that for ordinals {{mvar|α}} and {{mvar|β}}:{{r|HaydenKennison1968}} *<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\beta+1}</math> when {{math|''α'' ≤ ''β''+1}}; *<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}</math> when {{math|''β''+1 < ''α''}} and <math>\aleph_{\beta} < \operatorname{cf} (\aleph_{\alpha})</math>, where '''cf''' is the [[cofinality]] operation; and *<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha+1}</math> when {{math|''β''+1 < ''α''}} and {{nowrap|<math>\aleph_{\beta} \ge \operatorname{cf} (\aleph_{\alpha})</math>.}} The first equality (when {{mvar|''α'' ≤ ''β''+1}}) follows from: <math display="block">\aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\beta+1}^{\aleph_{\beta}} =(2^{\aleph_{\beta}})^{\aleph_{\beta}} = 2^{\aleph_{\beta}\cdot\aleph_{\beta}} = 2^{\aleph_{\beta}} = \aleph_{\beta+1} </math> while: <math display="block">\aleph_{\beta+1} = 2^{\aleph_{\beta}} \le \aleph_{\alpha}^{\aleph_{\beta}} .</math> The third equality (when {{mvar|''β''+1 < ''α''}} and <math>\aleph_{\beta} \ge \operatorname{cf}(\aleph_{\alpha})</math>) follows from: <math display="block">\aleph_{\alpha}^{\aleph_{\beta}} \ge \aleph_{\alpha}^{\operatorname{cf}(\aleph_{\alpha})} > \aleph_{\alpha} </math> by [[Kőnig's theorem (set theory)#Kőnig's_theorem_and_cofinality|Kőnig's theorem]], while: <math display="block">\aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\alpha}^{\aleph_{\alpha}} \le (2^{\aleph_{\alpha}})^{\aleph_{\alpha}} = 2^{\aleph_{\alpha}\cdot\aleph_{\alpha}} = 2^{\aleph_{\alpha}} = \aleph_{\alpha+1}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)