Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Closed convex sets === [[closed set|Closed]] convex sets are convex sets that contain all their [[limit points]]. They can be characterised as the intersections of ''closed [[Half-space (geometry)|half-space]]s'' (sets of points in space that lie on and to one side of a [[hyperplane]]). From what has just been said, it is clear that such intersections are convex, and they will also be closed sets. To prove the converse, i.e., every closed convex set may be represented as such intersection, one needs the [[supporting hyperplane theorem]] in the form that for a given closed convex set {{mvar|C}} and point {{mvar|P}} outside it, there is a closed half-space {{mvar|H}} that contains {{mvar|C}} and not {{mvar|P}}. The supporting hyperplane theorem is a special case of the [[Hahn–Banach theorem]] of [[functional analysis]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)