Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coset
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== More examples == === Integers === Let {{math|''G''}} be the [[additive group]] of the integers, {{math|1='''Z''' = ({..., β2, β1, 0, 1, 2, ...}, +)}} and {{math|''H''}} the subgroup {{math|1=(3'''Z''', +) = ({..., β6, β3, 0, 3, 6, ...}, +)}}. Then the cosets of {{math|''H''}} in {{math|''G''}} are the three sets {{math|3'''Z'''}}, {{math|3'''Z''' + 1}}, and {{math|3'''Z''' + 2}}, where {{math|1=3'''Z''' + ''a'' = {{mset|..., β6 + ''a'', β3 + ''a'', ''a'', 3 + ''a'', 6 + ''a'', ...}}}}. These three sets partition the set {{math|'''Z'''}}, so there are no other right cosets of {{mvar|H}}. Due to the [[commutivity]] of addition {{math|1=''H'' + 1 = 1 + ''H''}} and {{math|1=''H'' + 2 = 2 + ''H''}}. That is, every left coset of {{mvar|H}} is also a right coset, so {{mvar|H}} is a normal subgroup.<ref>{{harvnb|Fraleigh|1994|loc=p. 117}}</ref> (The same argument shows that every subgroup of an Abelian group is normal.<ref name=Fraleigh>{{harvnb|Fraleigh|1994|loc=p. 169}}</ref>) This example may be generalized. Again let {{math|''G''}} be the additive group of the integers, {{math|1='''Z''' = ({..., β2, β1, 0, 1, 2, ...}, +)}}, and now let {{math|''H''}} the subgroup {{math|1=(''m'''''Z''', +) = ({..., β2''m'', β''m'', 0, ''m'', 2''m'', ...}, +)}}, where {{mvar|m}} is a positive integer. Then the cosets of {{math|''H''}} in {{math|''G''}} are the {{mvar|m}} sets {{math|''m'''''Z'''}}, {{math|''m'''''Z''' + 1}}, ..., {{math|''m'''''Z''' + (''m'' β 1)}}, where {{math|1=''m'''''Z''' + ''a'' = {{mset|..., β2''m'' + ''a'', β''m'' + ''a'', ''a'', ''m'' + ''a'', 2''m'' + ''a'', ...}}}}. There are no more than {{mvar|m}} cosets, because {{math|1=''m'''''Z''' + ''m'' = ''m''('''Z''' + 1) = ''m'''''Z'''}}. The coset {{math|(''m'''''Z''' + ''a'', +)}} is the [[Modular arithmetic#Congruence classes|congruence class]] of {{mvar|a}} modulo {{mvar|m}}.<ref>{{harvnb|Joshi|1989|loc= p. 323}}</ref> The subgroup {{math|''m'''''Z'''}} is normal in {{math|'''Z'''}}, and so, can be used to form the quotient group {{math|'''Z'''{{hsp}}/{{hsp}}''m'''''Z'''}} the group of [[Integers mod n|integers mod {{math|''m''}}]]. === Vectors === Another example of a coset comes from the theory of [[vector space]]s. The elements (vectors) of a vector space form an [[abelian group]] under [[vector addition]]. The [[linear subspace|subspaces]] of the vector space are [[subgroups]] of this group. For a vector space {{math|''V''}}, a subspace {{math|''W''}}, and a fixed vector {{math|'''a'''}} in {{math|''V''}}, the sets <math display="block">\{\mathbf{x} \in V \mid \mathbf{x} = \mathbf{a} + \mathbf{w}, \mathbf{w} \in W\}</math> are called [[affine subspace]]s, and are cosets (both left and right, since the group is abelian). In terms of 3-dimensional [[Euclidean space|geometric]] vectors, these affine subspaces are all the "lines" or "planes" [[Parallel (geometry)|parallel]] to the subspace, which is a line or plane going through the origin. For example, consider the [[Plane (geometry)|plane]] {{math|'''R'''<sup>2</sup>}}. If {{mvar|m}} is a line through the origin {{mvar|O}}, then {{mvar|m}} is a subgroup of the abelian group {{math|'''R'''<sup>2</sup>}}. If {{mvar|P}} is in {{math|'''R'''<sup>2</sup>}}, then the coset {{math|''P'' + ''m''}} is a line {{math|''m''β²}} parallel to {{mvar|m}} and passing through {{mvar|P}}.<ref>{{harvnb|Rotman|2006|loc=p. 155}}</ref> === Matrices === Let {{mvar|G}} be the multiplicative group of matrices,<ref>{{harvnb|Burton|1988|loc=pp. 128, 135}}</ref> <math display="block">G = \left \{\begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} \colon a, b \in \R, a \neq 0 \right\},</math> and the subgroup {{mvar|H}} of {{mvar|G}}, <math display="block">H= \left \{\begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \colon c \in \mathbb{R} \right\}.</math> For a fixed element of {{mvar|G}} consider the left coset <math display="block">\begin{align} \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} H = &~ \left \{\begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \colon c \in \R \right\} \\ =&~ \left \{\begin{bmatrix} a & 0 \\ b + c & 1 \end{bmatrix} \colon c \in \mathbb{R}\right\} \\ =&~ \left \{\begin{bmatrix} a & 0 \\ d & 1 \end{bmatrix} \colon d \in \mathbb{R}\right\}. \end{align}</math> That is, the left cosets consist of all the matrices in {{mvar|G}} having the same upper-left entry. This subgroup {{mvar|H}} is normal in {{mvar|G}}, but the subgroup <math display="block">T= \left \{\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \colon a \in \mathbb{R} - \{0\} \right\}</math> is not normal in {{mvar|G}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)