Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cosmic string
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Observational evidence== It was once thought that the gravitational influence of cosmic strings might contribute to the [[large-scale structure of the cosmos|large-scale clumping of matter]] in the universe, but all that is known today through galaxy surveys and precision measurements of the [[cosmic microwave background]] (CMB) fits an evolution out of random, [[Normal distribution|gaussian]] fluctuations. These precise observations therefore tend to rule out a significant role for cosmic strings and currently it is known that the contribution of cosmic strings to the CMB cannot be more than 10%. The violent oscillations of cosmic strings generically lead to the formation of [[Cusp (singularity)|cusps]] and [[Sine-Gordon equation#Soliton solutions|kinks]]. These in turn cause parts of the string to pinch off into isolated loops. These loops have a finite lifespan and decay (primarily) via [[gravitational radiation]]. This radiation which leads to the strongest signal from cosmic strings may in turn be detectable in [[Gravitational-wave observatory|gravitational wave observatories]]. An important open question is to what extent do the pinched off loops backreact or change the initial state of the emitting cosmic string—such backreaction effects are almost always neglected in computations and are known to be important, even for order of magnitude estimates. [[Gravitational lensing]] of a galaxy by a straight section of a cosmic string would produce two identical, undistorted images of the galaxy. In 2003 a group led by Mikhail Sazhin reported the accidental discovery of two seemingly identical galaxies very close together in the sky, leading to speculation that a cosmic string had been found.<ref>{{cite journal |arxiv=astro-ph/0302547 |bibcode=2003MNRAS.343..353S | doi=10.1046/j.1365-8711.2003.06568.x |title=CSL-1: Chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string? |year=2003 |last1=Sazhin |first1=M. |last2=Longo |first2=G. |last3=Capaccioli |first3=M. |last4=Alcala |first4=J. M. |last5=Silvotti |first5=R. |last6=Covone |first6=G. |last7=Khovanskaya |first7=O. |last8=Pavlov |first8=M. |last9=Pannella |first9=M. |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=343 |issue=2 |pages=353|display-authors=9 |last10=Radovich |first10=M. |last11=Testa |first11=V. |doi-access=free |s2cid=18650564 }}</ref> However, observations by the [[Hubble Space Telescope]] in January 2005 showed them to be a pair of similar galaxies, not two images of the same galaxy.<ref>{{cite journal |arxiv=astro-ph/0603838 |bibcode=2006PhRvD..73h7302A |doi=10.1103/PhysRevD.73.087302 |title=Hubble imaging excludes cosmic string lens |year=2006 |last1=Agol |first1=Eric |last2=Hogan |first2=Craig |last3=Plotkin |first3=Richard |journal=Physical Review D |volume=73 |issue=8|pages=87302 |s2cid=119450257 }}</ref><ref>{{cite arXiv |eprint=astro-ph/0601494 |last1=Sazhin |first1=M. V. |last2=Capaccioli |first2=M. |last3=Longo |first3=G. |last4=Paolillo |first4=M. |last5=Khovanskaya |first5=O. S. |last6=Grogin |first6=N. A. |last7=Schreier |first7=E. J. |last8=Covone |first8=G. |title=The true nature of CSL-1 |year=2006}}</ref> A cosmic string would produce a similar duplicate image of fluctuations in the [[cosmic microwave background]], which it was thought might have been detectable by the [[Planck Surveyor]] mission.<ref>{{cite journal |arxiv=0708.1162 |bibcode=2008PhRvD..78d3535F |doi=10.1103/PhysRevD.78.043535 |title=Small-angle CMB temperature anisotropies induced by cosmic strings |year=2008 |last1=Fraisse |first1=Aurélien |last2=Ringeval |first2=Christophe |last3=Spergel |first3=David |last4=Bouchet |first4=François |journal=Physical Review D |volume=78 |issue=4 |pages=43535 |s2cid=119145024 }}</ref> However, a 2013 analysis of data from the Planck mission failed to find any evidence of cosmic strings.<ref name="planck_strings">{{Cite journal|arxiv=1303.5085 |author1=Planck Collaboration |last2=Ade |first2=P. A. R. |last3=Aghanim |first3=N. |author3-link=Nabila Aghanim|last4=Armitage-Caplan |first4=C. |last5=Arnaud |first5=M. |last6=Ashdown |first6=M. |last7=Atrio-Barandela |first7=F. |last8=Aumont |first8=J. |last9=Baccigalupi |first9=C. |title=Planck 2013 results. XXV. Searches for cosmic strings and other topological defects |journal=Astronomy & Astrophysics |volume=571 |pages=A25 |year=2013|last10= Banday |first10=A. J. |last11= Barreiro |first11=R. B. |last12= Bartlett |first12=J. G. |last13= Bartolo |first13=N. |last14= Battaner |first14=E. |last15= Battye |first15=R. |last16= Benabed |first16=K. |last17= Benoît |first17=A. |last18= Benoit-Lévy |first18=A. |last19= Bernard |first19=J. -P. |last20= Bersanelli |first20=M. |last21= Bielewicz |first21=P. |last22= Bobin |first22=J. |last23= Bock |first23=J. J. |last24= Bonaldi |first24=A. |last25= Bonavera |first25=L. |last26= Bond |first26=J. R. |last27= Borrill |first27=J. |last28= Bouchet |first28=F. R. |last29= Bridges |first29=M. |last30= Bucher |first30=M. |display-authors=29 |doi=10.1051/0004-6361/201321621 |bibcode=2014A&A...571A..25P|s2cid=15347782 }}</ref> A piece of evidence supporting cosmic string theory is a phenomenon noticed in observations of the "double [[quasar]]" called [[Twin Quasar|Q0957+561A,B]]. Originally discovered by [[Dennis Walsh]], Bob Carswell, and [[Ray Weymann]] in 1979, the double image of this quasar is caused by a galaxy positioned between it and the Earth. The [[gravitational lens]] effect of this intermediate galaxy bends the quasar's light so that it follows two paths of different lengths to Earth. The result is that we see two images of the same quasar, one arriving a short time after the other (about 417.1 days later). However, a team of astronomers at the [[Harvard-Smithsonian Center for Astrophysics]] led by [[Rudolph Schild]] studied the quasar and found that during the period between September 1994 and July 1995 the two images appeared to have no time delay; changes in the brightness of the two images occurred simultaneously on four separate occasions. Schild and his team believe that the only explanation for this observation is that a cosmic string passed between the Earth and the quasar during that time period traveling at very high speed and oscillating with a period of about 100 days.<ref>{{cite journal |arxiv=astro-ph/0406434 |bibcode=2004A&A...422..477S|doi=10.1051/0004-6361:20040274 |title=Anomalous fluctuations in observations of Q0957+561 A,B: Smoking gun of a cosmic string? |year=2004 |last1=Schild |first1=R. |last2=Masnyak |first2=I. S. |last3=Hnatyk |first3=B. I. |last4=Zhdanov |first4=V. I. |journal=Astronomy and Astrophysics |volume=422 |issue=2 |pages=477–482|s2cid=16939392}}</ref> Until 2023 the most sensitive bounds on cosmic string parameters came from the non-detection of gravitational waves by [[pulsar timing array]] data.<ref>{{Cite journal|arxiv=1508.03024 |title=The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background |journal=The Astrophysical Journal |volume=821 |issue=1 |pages=13 |year=2015|last1=Arzoumanian |first1=Zaven |last2=Brazier |first2=Adam |last3=Burke-Spolaor |first3=Sarah |last4=Chamberlin |first4=Sydney |last5=Chatterjee |first5=Shami |last6=Christy |first6=Brian |last7=Cordes |first7=Jim |last8=Cornish |first8=Neil |last9=Demorest |first9=Paul |last10=Deng |first10=Xihao |last11=Dolch |first11=Tim |last12=Ellis |first12=Justin |last13=Ferdman |first13=Rob |last14=Fonseca |first14=Emmanuel |last15=Garver-Daniels |first15=Nate |last16=Jenet |first16=Fredrick |last17=Jones |first17=Glenn |last18=Kaspi |first18=Vicky |last19=Koop |first19=Michael |last20=Lam |first20=Michael |last21=Lazio |first21=Joseph |last22=Levin |first22=Lina |last23=Lommen |first23=Andrea |last24=Lorimer |first24=Duncan |last25=Luo |first25=Jin |last26=Lynch |first26=Ryan |last27=Madison |first27=Dustin |last28=McLaughlin |first28=Maura |last29=McWilliams |first29=Sean |last30=Mingarelli |first30=Chiara |display-authors=29 |doi=10.3847/0004-637X/821/1/13 |bibcode = 2016ApJ...821...13A |s2cid=34191834 |doi-access=free }}</ref> The first detection of gravitational waves with pulsar timing array was confirmed in 2023.<ref>{{Cite web |last=Shelton |first=Jim |date=2023-06-28 |title=Astrophysicists present first evidence of gravitational wave ‘background’ {{!}} Yale News |url=https://news.yale.edu/2023/06/28/astrophysicists-present-first-evidence-gravitational-wave-background |access-date=2025-01-23 |website=news.yale.edu |language=en}}</ref><ref>{{Cite journal |last=Rini |first=Matteo |date=2023-06-29 |title=Researchers Capture Gravitational-Wave Background with Pulsar “Antennae” |url=https://physics.aps.org/articles/v16/118 |journal=Physics |language=en |volume=16 |pages=118}}</ref> The earthbound [[LIGO|Laser Interferometer Gravitational-Wave Observatory]] (LIGO) and especially the space-based gravitational wave detector [[Laser Interferometer Space Antenna]] (LISA) will search for gravitational waves and are likely to be sensitive enough to detect signals from cosmic strings, provided the relevant cosmic string tensions are not too small.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)