Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relation to the correlation matrix=== {{further|Correlation matrix}} An entity closely related to the covariance matrix is the matrix of [[Pearson product-moment correlation coefficient]]s between each of the random variables in the random vector <math>\mathbf{X}</math>, which can be written as <math display="block">\operatorname{corr}(\mathbf{X}) = \big(\operatorname{diag}(\operatorname{K}_{\mathbf{X}\mathbf{X}})\big)^{-\frac{1}{2}} \, \operatorname{K}_{\mathbf{X}\mathbf{X}} \, \big(\operatorname{diag}(\operatorname{K}_{\mathbf{X}\mathbf{X}})\big)^{-\frac{1}{2}},</math> where <math>\operatorname{diag}(\operatorname{K}_{\mathbf{X}\mathbf{X}})</math> is the matrix of the diagonal elements of <math>\operatorname{K}_{\mathbf{X}\mathbf{X}}</math> (i.e., a [[diagonal matrix]] of the variances of <math>X_i</math> for <math>i = 1, \dots, n</math>). Equivalently, the correlation matrix can be seen as the covariance matrix of the [[standardized variable|standardized random variables]] <math>X_i/\sigma(X_i)</math> for <math>i = 1, \dots, n</math>. <math display="block"> \operatorname{corr}(\mathbf{X}) = \begin{bmatrix} 1 & \frac{\operatorname{E}[(X_1 - \mu_1)(X_2 - \mu_2)]}{\sigma(X_1)\sigma(X_2)} & \cdots & \frac{\operatorname{E}[(X_1 - \mu_1)(X_n - \mu_n)]}{\sigma(X_1)\sigma(X_n)} \\ \\ \frac{\operatorname{E}[(X_2 - \mu_2)(X_1 - \mu_1)]}{\sigma(X_2)\sigma(X_1)} & 1 & \cdots & \frac{\operatorname{E}[(X_2 - \mu_2)(X_n - \mu_n)]}{\sigma(X_2)\sigma(X_n)} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\operatorname{E}[(X_n - \mu_n)(X_1 - \mu_1)]}{\sigma(X_n)\sigma(X_1)} & \frac{\operatorname{E}[(X_n - \mu_n)(X_2 - \mu_2)]}{\sigma(X_n)\sigma(X_2)} & \cdots & 1 \end{bmatrix}. </math> Each element on the principal diagonal of a correlation matrix is the correlation of a random variable with itself, which always equals 1. Each [[off-diagonal element]] is between β1 and +1 inclusive.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)