Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Crystal system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Crystal classes== {{main|Crystallographic point group}} The 7 crystal systems consist of 32 crystal classes (corresponding to the 32 crystallographic point groups) as shown in the following table below: {| class=wikitable |- ! Crystal family ! Crystal system ! [[Point group]] / Crystal class ! [[Schönflies notation|Schönflies]] ! [[Hermann–Mauguin notation|Hermann–Mauguin]] ! [[Orbifold notation|Orbifold]] ! [[Coxeter notation|Coxeter]] ! Point symmetry ! [[Symmetry number|Order]] ! [[Group theory#Abstract groups|Abstract group]] |- ! rowspan=2 colspan=2| [[triclinic crystal system|triclinic]] | pedial | C<sub>1</sub> | 1 | 11 | [ ]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] [[Polar point group|polar]] | 1 | trivial <math>\mathbb{Z}_1</math> |- | pinacoidal | C<sub>i</sub> (S<sub>2</sub>) | {{overline|1}} | 1x | [2,1<sup>+</sup>] | [[centrosymmetric]] | 2 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_2</math> |- ! rowspan=3 colspan=2 | [[monoclinic crystal system|monoclinic]] | sphenoidal | C<sub>2</sub> | 2 | 22 | [2,2]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] [[Polar point group|polar]] | 2 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_2</math> |- | domatic | C<sub>s</sub> (C<sub>1h</sub>) | m | *11 | [ ] | [[Polar point group|polar]] | 2 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_2</math> |- | [[prism (geometry)|prismatic]] | C<sub>2h</sub> | 2/m | 2* | [2,2<sup>+</sup>] | [[centrosymmetric]] | 4 | [[Klein four-group|Klein four]] <math>\mathbb{V} = \mathbb{Z}_2\times\mathbb{Z}_2</math> |- ! rowspan=3 colspan=2| [[orthorhombic crystal system|orthorhombic]] | rhombic-disphenoidal | D<sub>2</sub> (V) | 222 | 222 | [2,2]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 4 | [[Klein four-group|Klein four]] <math>\mathbb{V} = \mathbb{Z}_2\times\mathbb{Z}_2</math> |- | rhombic-[[Pyramid (geometry)|pyramidal]] | C<sub>2v</sub> | mm2 | *22 | [2] | [[Polar point group|polar]] | 4 | [[Klein four-group|Klein four]] <math>\mathbb{V} = \mathbb{Z}_2\times\mathbb{Z}_2</math> |- | rhombic-[[dipyramid]]al | D<sub>2h</sub> (V<sub>h</sub>) | mmm | *222 | [2,2] | [[centrosymmetric]] | 8 | <math>\mathbb{V}\times\mathbb{Z}_2</math> |- ! rowspan=7 colspan=2| [[tetragonal crystal system|tetragonal]] | tetragonal-pyramidal | C<sub>4</sub> | 4 | 44 | [4]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] [[Polar point group|polar]] | 4 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_4</math> |- | tetragonal-disphenoidal | S<sub>4</sub> | {{overline|4}} | 2x | [2<sup>+</sup>,2] | [[non-centrosymmetric]] | 4 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_4</math> |- | tetragonal-dipyramidal | C<sub>4h</sub> | 4/m | 4* | [2,4<sup>+</sup>] | [[centrosymmetric]] | 8 | <math>\mathbb{Z}_4\times\mathbb{Z}_2</math> |- | tetragonal-trapezohedral | D<sub>4</sub> | 422 | 422 | [2,4]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 8 | [[Dihedral group|dihedral]] <math>\mathbb{D}_8 = \mathbb{Z}_4\rtimes\mathbb{Z}_2</math> |- | ditetragonal-pyramidal | C<sub>4v</sub> | 4mm | *44 | [4] | [[Polar point group|polar]] | 8 | [[Dihedral group|dihedral]] <math>\mathbb{D}_8 = \mathbb{Z}_4\rtimes\mathbb{Z}_2</math> |- | tetragonal-scalenohedral | D<sub>2d</sub> (V<sub>d</sub>) | {{overline|4}}2m or {{overline|4}}m2 | 2*2 | [2<sup>+</sup>,4] | [[non-centrosymmetric]] | 8 | [[Dihedral group|dihedral]] <math>\mathbb{D}_8 = \mathbb{Z}_4\rtimes\mathbb{Z}_2</math> |- | ditetragonal-dipyramidal | D<sub>4h</sub> | 4/mmm | *422 | [2,4] | [[centrosymmetric]] | 16 | <math>\mathbb{D}_8\times\mathbb{Z}_2</math> |- ! rowspan=12| [[hexagonal crystal family|hexagonal]] ! rowspan=5| trigonal | trigonal-pyramidal | C<sub>3</sub> | 3 | 33 | [3]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] [[Polar point group|polar]] | 3 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_3</math> |- | rhombohedral | C<sub>3i</sub> (S<sub>6</sub>) | {{overline|3}} | 3x | [2<sup>+</sup>,3<sup>+</sup>] | [[centrosymmetric]] | 6 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_6 = \mathbb{Z}_3\times\mathbb{Z}_2</math> |- | trigonal-trapezohedral | D<sub>3</sub> | 32 or 321 or 312 | 322 | [3,2]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 6 | [[Dihedral group|dihedral]] <math>\mathbb{D}_6 = \mathbb{Z}_3\rtimes\mathbb{Z}_2</math> |- | ditrigonal-pyramidal | C<sub>3v</sub> | 3m or 3m1 or 31m | *33 | [3] | [[Polar point group|polar]] | 6 | [[Dihedral group|dihedral]] <math>\mathbb{D}_6 = \mathbb{Z}_3\rtimes\mathbb{Z}_2</math> |- | ditrigonal-scalenohedral | D<sub>3d</sub> | {{overline|3}}m or {{overline|3}}m1 or {{overline|3}}1m | 2*3 | [2<sup>+</sup>,6] | [[centrosymmetric]] | 12 | [[Dihedral group|dihedral]] <math>\mathbb{D}_{12} = \mathbb{Z}_6\rtimes\mathbb{Z}_2</math> |- ! rowspan=7 | hexagonal | hexagonal-pyramidal | C<sub>6</sub> | 6 | 66 | [6]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] [[Polar point group|polar]] | 6 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_6 = \mathbb{Z}_3\times\mathbb{Z}_2</math> |- | trigonal-dipyramidal | C<sub>3h</sub> | {{overline|6}} | 3* | [2,3<sup>+</sup>] | [[non-centrosymmetric]] | 6 | [[Cyclic group|cyclic]] <math>\mathbb{Z}_6 = \mathbb{Z}_3\times\mathbb{Z}_2</math> |- | hexagonal-dipyramidal | C<sub>6h</sub> | 6/m | 6* | [2,6<sup>+</sup>] | [[centrosymmetric]] | 12 | <math>\mathbb{Z}_6\times\mathbb{Z}_2</math> |- | hexagonal-trapezohedral | D<sub>6</sub> | 622 | 622 | [2,6]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 12 | [[Dihedral group|dihedral]] <math>\mathbb{D}_{12} = \mathbb{Z}_6\rtimes\mathbb{Z}_2</math> |- | dihexagonal-pyramidal | C<sub>6v</sub> | 6mm | *66 | [6] | [[Polar point group|polar]] | 12 | [[Dihedral group|dihedral]] <math>\mathbb{D}_{12} = \mathbb{Z}_6\rtimes\mathbb{Z}_2</math> |- | ditrigonal-dipyramidal | D<sub>3h</sub> | {{overline|6}}m2 or {{overline|6}}2m | *322 | [2,3] | [[non-centrosymmetric]] | 12 | [[Dihedral group|dihedral]] <math>\mathbb{D}_{12} = \mathbb{Z}_6\rtimes\mathbb{Z}_2</math> |- | dihexagonal-dipyramidal | D<sub>6h</sub> | 6/mmm | *622 | [2,6] | [[centrosymmetric]] | 24 | <math>\mathbb{D}_{12}\times\mathbb{Z}_2</math> |- ! rowspan=5 colspan=2 | [[cubic crystal system|cubic]] | tetartoidal | T | 23 | 332 | [3,3]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 12 | [[alternating group|alternating]] <math>\mathbb{A}_4</math> |- | diploidal | T<sub>h</sub> | m{{overline|3}} | 3*2 | [3<sup>+</sup>,4] | [[centrosymmetric]] | 24 | <math>\mathbb{A}_4\times\mathbb{Z}_2</math> |- | gyroidal | O | 432 | 432 | [4,3]<sup>+</sup> | [[Chirality (chemistry)|enantiomorphic]] | 24 | [[symmetric group|symmetric]] <math>\mathbb{S}_4</math> |- | [[tetrakis hexahedron|hextetrahedral]] | T<sub>d</sub> | {{overline|4}}3m | *332 | [3,3] | [[non-centrosymmetric]] | 24 | [[symmetric group|symmetric]] <math>\mathbb{S}_4</math> |- | [[disdyakis dodecahedron|hexoctahedral]] | O<sub>h</sub> | m{{overline|3}}m | *432 | [4,3] | [[centrosymmetric]] | 48 | <math>\mathbb{S}_4\times\mathbb{Z}_2</math> |} The point symmetry of a structure can be further described as follows. Consider the points that make up the structure, and reflect them all through a single point, so that (''x'',''y'',''z'') becomes (−''x'',−''y'',−''z''). This is the 'inverted structure'. If the original structure and inverted structure are identical, then the structure is ''centrosymmetric''. Otherwise it is ''non-centrosymmetric''. Still, even in the non-centrosymmetric case, the inverted structure can in some cases be rotated to align with the original structure. This is a non-centrosymmetric ''achiral'' structure. If the inverted structure cannot be rotated to align with the original structure, then the structure is ''[[Chirality|chiral]]'' or ''enantiomorphic'' and its symmetry group is ''enantiomorphic''.<ref>{{cite journal|last=Flack|first=Howard D.|year=2003|title=Chiral and Achiral Crystal Structures|journal=Helvetica Chimica Acta|volume=86|issue=4|pages=905–921|citeseerx=10.1.1.537.266|doi=10.1002/hlca.200390109}}</ref> A direction (meaning a line without an arrow) is called ''polar'' if its two-directional senses are geometrically or physically different. A symmetry direction of a crystal that is polar is called a ''polar axis''.{{Sfn|Hahn|2002|p=804}} Groups containing a polar axis are called ''[[polar point group|polar]]''. A polar crystal possesses a unique polar axis (more precisely, all polar axes are parallel). Some geometrical or physical property is different at the two ends of this axis: for example, there might develop a [[Polarization density|dielectric polarization]] as in [[Pyroelectricity|pyroelectric crystals]]. A polar axis can occur only in non-centrosymmetric structures. There cannot be a mirror plane or twofold axis perpendicular to the polar axis, because they would make the two directions of the axis equivalent. The [[crystal structure]]s of chiral biological molecules (such as [[protein]] structures) can only occur in the 65 [[Chirality (chemistry)|enantiomorphic]] space groups (biological molecules are usually [[Chirality (chemistry)|chiral]]). <!--The protein assemblies themselves may have symmetries other than those given above because they are not intrinsically restricted by the [[Crystallographic restriction theorem]]. For example, the [[Rad52]] DNA binding protein has an 11-fold rotational symmetry (in human), however, it must form crystals in one of the 65 [[Chirality (chemistry)|enantiomorphic]] space groups given above. -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)