Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cuboctahedron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Configuration matrix == {{more citations needed section|date=March 2025}} The cuboctahedron can be represented as a [[Configuration (polytope)|configuration matrix]] with elements grouped by symmetry transitivity classes. A configuration matrix is a [[Matrix (mathematics)|matrix]] in which the rows and columns correspond to the elements of a polyhedron as in the vertices, edges, and faces. The [[Main diagonal|diagonal]] of a matrix denotes the number of each element that appears in a polyhedron, whereas the non-diagonal of a matrix denotes the number of the column's elements that occur in or at the row's element. The cuboctahedron has 1 transitivity class of 12 vertices, 1 class of 24 edges, and 2 classes of faces: 8 triangular and 6 square; each element in a matrix's diagonal.<ref>{{cite web | url=https://www.bendwavy.org/klitzing/incmats/co.htm | title=Co }}</ref> The 24 edges can be seen in 4 central hexagons. With [[octahedral symmetry]] ([[orbifold notation|orbifold]] 432), the squares have the 4-fold symmetry, triangles the 3-fold symmetry, and vertices the 2-fold symmetry. With [[tetrahedral symmetry]] (orbifold 332) the 24 vertices split into 2 edge classes, and the 8 triangles split into 2 face classes. The square symmetry is reduced to 2-fold. {| class=wikitable !colspan=2|Octahedral symmetry (432)||colspan=2|Tetrahedral symmetry (332) |- |[[File:cuboctahedron colored.svg|240px]] | valign=top| {| class=wikitable |+ Configuration |- |(432)||style="background-color:#3CB44B; color: #000000"|v<sub>1</sub>||style="background-color:#FF00FF;"|e<sub>1</sub>||style="background-color:#0000FF; color: #E0E0E0"|f<sub>1</sub>||style="background-color:#FF0000;"|f<sub>2</sub> |- align=right |style="background-color:#3CB44B; color:#000000"|v<sub>1 (Z<sub>2</sub>)</sub>||style="background-color:#E0F0FF"|12|||4|||2|||2 |- align=right |align=left style="background-color:#FF00FF;"|e<sub>1</sub>|||2||style="background-color:#f0FFE0"|24|||1|||1 |- align=right |align=left style="background-color:#0000FF; color:#E0E0E0"|f<sub>1 (Z<sub>3</sub>)</sub>|||3|||3||style="background-color:#FFFFE0"|8||style="background-color:#FFFFE0"|* |- align=right |align=left style="background-color:#FF0000;"|f<sub>2 (Z<sub>4</sub>)</sub>|||4|||4||style="background-color:#FFFFE0"|*||style="background-color:#FFFFE0"|6 |} |[[File:Cuboctahedron-tetrahedral colored.svg|240px]] | {| class=wikitable |+ Configuration |- |(332)||style="background-color:#D51D5D;"|v<sub>1</sub>||style="background-color:#3CB44B;"|e<sub>1</sub>||style="background-color:#E6194B;"|e<sub>2</sub>||style="background-color:#4363D8;"|f<sub>1</sub>||style="background-color:#FFE119;"|f<sub>2</sub>||style="background-color:#F58231;"|f<sub>3</sub> |- align=right |align=left style="background-color:#D51D5D;"|v<sub>1</sub>||style="background-color:#E0F0FF"|12|||2|||2|||1|||1|||2 |- align=right |align=left style="background-color:#3CB44B;"|e<sub>1</sub>|||2||style="background-color:#f0FFE0"|12||style="background-color:#f0FFE0"|*|||1|||0|||1 |- align=right |align=left style="background-color:#E6194B;"|e<sub>2</sub>|||2||style="background-color:#f0FFE0"|*||style="background-color:#f0FFE0"|12|||0|||1|||1 |- align=right |align=left style="background-color:#4363D8;"|f<sub>1 (Z<sub>3</sub>)</sub>|||3|||3|||0||style="background-color:#FFFFE0"|4||style="background-color:#FFFFE0"|*||style="background-color:#FFFFE0"|* |- align=right |align=left style="background-color:#FFE119;"|f<sub>2 (Z<sub>3</sub>)</sub>|||3|||0|||3||style="background-color:#FFFFE0"|*||style="background-color:#FFFFE0"|4||style="background-color:#FFFFE0"|* |- align=right |align=left style="background-color:#F58231;"|f<sub>3 (Z<sub>2</sub>)</sub>|||4|||2|||2||style="background-color:#FFFFE0"|*||style="background-color:#FFFFE0"|*||style="background-color:#FFFFE0"|6 |} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)