Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Deductive reasoning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Modus tollens ==== {{Main|Modus tollens}} Modus tollens (also known as "the law of contrapositive") is a deductive rule of inference. It validates an argument that has as premises a conditional statement (formula) and the negation of the consequent (<math>\lnot Q</math>) and as conclusion the negation of the antecedent (<math>\lnot P</math>). In contrast to [[modus ponens]], reasoning with modus tollens goes in the opposite direction to that of the conditional. The general expression for modus tollens is the following: # <math>P \rightarrow Q</math>. (First premise is a conditional statement) # <math>\lnot Q</math>. (Second premise is the negation of the consequent) # <math>\lnot P</math>. (Conclusion deduced is the negation of the antecedent) The following is an example of an argument using modus tollens: # If it is raining, then there are clouds in the sky. # There are no clouds in the sky. # Thus, it is not raining.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)