Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Definite matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Notation === If a Hermitian matrix <math>M</math> is positive semi-definite, one sometimes writes <math>M \succeq 0</math> and if <math>M</math> is positive-definite one writes <math>M \succ 0.</math> To denote that <math>M</math> is negative semi-definite one writes <math>M \preceq 0</math> and to denote that <math>M</math> is negative-definite one writes <math>M \prec 0.</math> The notion comes from [[functional analysis]] where positive semidefinite matrices define [[positive operator]]s. If two matrices <math>A</math> and <math>B</math> satisfy <math>B - A \succeq 0,</math> we can define a [[Partially ordered set#Non-strict partial order|non-strict partial order]] <math>B \succeq A</math> that is [[Reflexive relation|reflexive]], [[Antisymmetric relation|antisymmetric]], and [[Transitive relation|transitive]]; It is not a [[total order]], however, as <math>B - A,</math> in general, may be indefinite. A common alternative notation is <math>M \geq 0,</math> <math>M > 0,</math> <math>M \leq 0,</math> and <math>M < 0</math> for positive semi-definite and positive-definite, negative semi-definite and negative-definite matrices, respectively. This may be confusing, as sometimes [[nonnegative matrix|nonnegative matrices]] (respectively, nonpositive matrices) are also denoted in this way.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)