Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Density matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Entropy == The [[von Neumann entropy]] <math>S</math> of a mixture can be expressed in terms of the eigenvalues of <math>\rho</math> or in terms of the [[Trace (linear algebra)|trace]] and [[Matrix logarithm|logarithm]] of the density operator <math>\rho</math>. Since <math>\rho</math> is a positive semi-definite operator, it has a [[spectral theorem|spectral decomposition]] such that <math>\rho = \textstyle\sum_i \lambda_i |\varphi_i\rangle \langle\varphi_i|</math>, where <math>|\varphi_i\rangle</math> are orthonormal vectors, <math>\lambda_i \ge 0</math>, and <math>\textstyle \sum \lambda_i = 1</math>. Then the entropy of a quantum system with density matrix <math>\rho</math> is : <math>S = -\sum_i \lambda_i \ln\lambda_i = -\operatorname{tr}(\rho \ln\rho).</math> This definition implies that the von Neumann entropy of any pure state is zero.<ref name=Rieffel>{{Cite book|title-link= Quantum Computing: A Gentle Introduction |title=Quantum Computing: A Gentle Introduction|last1=Rieffel|first1=Eleanor G.|last2=Polak|first2=Wolfgang H.|date=2011-03-04|publisher=MIT Press|isbn=978-0-262-01506-6|language=en|author-link=Eleanor Rieffel}}</ref>{{Rp|217}} If <math>\rho_i</math> are states that have support on orthogonal subspaces, then the von Neumann entropy of a convex combination of these states, : <math>\rho = \sum_i p_i \rho_i,</math> is given by the von Neumann entropies of the states <math>\rho_i</math> and the [[Shannon entropy]] of the probability distribution <math>p_i</math>: : <math>S(\rho) = H(p_i) + \sum_i p_i S(\rho_i).</math> When the states <math>\rho_i</math> do not have orthogonal supports, the sum on the right-hand side is strictly greater than the von Neumann entropy of the convex combination <math>\rho</math>.<ref name="mikeandike" />{{rp|518}} Given a density operator <math>\rho</math> and a projective measurement as in the previous section, the state <math>\rho'</math> defined by the convex combination : <math>\rho' = \sum_i P_i \rho P_i,</math> which can be interpreted as the state produced by performing the measurement but not recording which outcome occurred,<ref name=":2">{{Cite book|last=Wilde|first=Mark M.|title=Quantum Information Theory|publisher=Cambridge University Press|year=2017|isbn=978-1-107-17616-4|edition=2nd|doi=10.1017/9781316809976.001|arxiv=1106.1445|s2cid=2515538 |oclc=973404322}}</ref>{{Rp|159}} has a von Neumann entropy larger than that of <math>\rho</math>, except if <math>\rho = \rho'</math>. It is however possible for the <math>\rho'</math> produced by a ''generalized'' measurement, or [[POVM]], to have a lower von Neumann entropy than <math>\rho</math>.<ref name="mikeandike">{{Citation | last1=Nielsen | first1=Michael | last2=Chuang | first2=Isaac | title=Quantum Computation and Quantum Information | title-link=Quantum Computation and Quantum Information | publisher=[[Cambridge University Press]] | isbn=978-0-521-63503-5 | year=2000}}.</ref>{{rp|514}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)