Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dimension
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Krull dimension=== The [[Krull dimension]] of a [[commutative ring]] is the maximal length of chains of [[prime ideal]]s in it, a chain of length ''n'' being a sequence <math>\mathcal{P}_0\subsetneq \mathcal{P}_1\subsetneq \cdots \subsetneq\mathcal{P}_n </math> of prime ideals related by inclusion. It is strongly related to the dimension of an algebraic variety, because of the natural correspondence between sub-varieties and prime ideals of the ring of the polynomials on the variety. For an [[algebra over a field]], the dimension as [[vector space]] is finite if and only if its Krull dimension is 0.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)