Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diophantine set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further applications== Matiyasevich's theorem has since been used to prove that many problems from [[calculus]] and [[differential equation]]s are unsolvable. One can also derive the following stronger form of [[Gödel's first incompleteness theorem]] from Matiyasevich's result: :''Corresponding to any given consistent axiomatization of number theory,<ref>More precisely, given a [[arithmetical hierarchy#The arithmetical hierarchy of formulas|<math>\Sigma^0_1</math>-formula]] representing the set of [[Gödel number]]s of [[sentence (mathematical logic)|sentences]] that recursively axiomatize a [[consistency|consistent]] [[theory (mathematical logic)|theory]] extending [[Robinson arithmetic]].</ref> one can explicitly construct a Diophantine equation that has no solutions, but such that this fact cannot be proved within the given axiomatization.'' According to the [[incompleteness theorem]]s, a powerful-enough consistent axiomatic theory is incomplete, meaning the truth of some of its propositions cannot be established within its formalism. The statement above says that this incompleteness must include the solvability of a diophantine equation, assuming that the theory in question is a number theory.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)