Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Moments=== Let <math>X = (X_1, \ldots, X_K)\sim\operatorname{Dir}(\boldsymbol\alpha)</math>. Let <math display=block>\alpha_0 = \sum_{i=1}^K \alpha_i.</math> Then<ref>Eq. (49.9) on page 488 of [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471183873.html Kotz, Balakrishnan & Johnson (2000). Continuous Multivariate Distributions. Volume 1: Models and Applications. New York: Wiley.]</ref><ref>{{cite book|author=BalakrishV. B.|year=2005|title=A Primer on Statistical Distributions|publisher=John Wiley & Sons, Inc.|location=Hoboken, NJ|isbn=978-0-471-42798-8|chapter="Chapter 27. Dirichlet Distribution"|page=[https://archive.org/details/primeronstatisti0000bala/page/274 274]|chapter-url=https://archive.org/details/primeronstatisti0000bala/page/274}}</ref> <math display=block>\operatorname{E}[X_i] = \frac{\alpha_i}{\alpha_0},</math> <math display=block>\operatorname{Var}[X_i] = \frac{\alpha_i (\alpha_0-\alpha_i)}{\alpha_0^2 (\alpha_0+1)}.</math> Furthermore, if <math> i\neq j</math> <math display=block>\operatorname{Cov}[X_i,X_j] = \frac{- \alpha_i \alpha_j}{\alpha_0^2 (\alpha_0+1)}.</math> The covariance matrix is [[invertible matrix|singular]]. More generally, moments of Dirichlet-distributed random variables can be expressed in the following way. For <math> \boldsymbol{t}=(t_1,\dotsc,t_K) \in \mathbb{R}^K</math>, denote by <math>\boldsymbol{t}^{\circ i} = (t_1^i,\dotsc,t_K^i)</math> its {{mvar|i}}-th [[Hadamard product (matrices)#Analogous operations|Hadamard power]]. Then,<ref>{{Cite journal |last=Dello Schiavo |first=Lorenzo |date=2019 |title=Characteristic functionals of Dirichlet measures |journal=Electron. J. Probab. |volume=24 |pages=1β38 |doi=10.1214/19-EJP371 |doi-access=free|arxiv=1810.09790 }}</ref> <math>\operatorname{E}\left[ (\boldsymbol{t} \cdot \boldsymbol{X})^n \right] = \frac{n! \, \Gamma ( \alpha_0 )}{\Gamma (\alpha_0+n)} \sum \frac{{t_1}^{k_1} \cdots {t_K}^{k_K}}{k_1! \cdots k_K!} \prod_{i=1}^K \frac{\Gamma(\alpha_i + k_i)}{\Gamma(\alpha_i)} = \frac{n! \, \Gamma ( \alpha_0 )}{\Gamma (\alpha_0+n)} Z_n(\boldsymbol{t}^{\circ 1} \cdot \boldsymbol{\alpha}, \cdots, \boldsymbol{t}^{\circ n} \cdot \boldsymbol{\alpha}),</math> where the sum is over non-negative integers <math>k_1,\ldots,k_K</math> with <math>n=k_1+\cdots+k_K</math>, and <math>Z_n</math> is the [[Cycle index#Symmetric group Sn|cycle index polynomial]] of the [[Symmetric group]] of degree {{mvar|n}}. We have the special case <math>\operatorname{E}\left[ \boldsymbol{t} \cdot \boldsymbol{X} \right] = \frac{\boldsymbol{t} \cdot \boldsymbol{\alpha}}{\alpha_0}. </math> The multivariate analogue <math display="inline">\operatorname{E}\left[ (\boldsymbol{t}_1 \cdot \boldsymbol{X})^{n_1} \cdots (\boldsymbol{t}_q \cdot \boldsymbol{X})^{n_q} \right]</math> for vectors <math>\boldsymbol{t}_1, \dotsc, \boldsymbol{t}_q \in \mathbb{R}^K</math> can be expressed<ref>{{ cite arXiv | last1=Dello Schiavo | first1=Lorenzo | last2=Quattrocchi | first2=Filippo | date=2023 | title=Multivariate Dirichlet Moments and a Polychromatic Ewens Sampling Formula | eprint=2309.11292 | class=math.PR }}</ref> in terms of a color pattern of the exponents <math>n_1, \dotsc, n_q</math> in the sense of [[PΓ³lya enumeration theorem]]. Particular cases include the simple computation<ref>{{cite web|last1=Hoffmann|first1=Till|title=Moments of the Dirichlet distribution|url=https://tillahoffmann.github.io/Moments-of-the-Dirichlet-distribution/|archive-url=https://web.archive.org/web/20160214015422/https://tillahoffmann.github.io/Moments-of-the-Dirichlet-distribution/ |access-date=14 February 2016|archive-date=2016-02-14 }}</ref> <math display=block>\operatorname{E}\left[\prod_{i=1}^K X_i^{\beta_i}\right] = \frac{B\left(\boldsymbol{\alpha} + \boldsymbol{\beta}\right)}{B\left(\boldsymbol{\alpha}\right)} = \frac{\Gamma\left(\sum\limits_{i=1}^K \alpha_{i}\right)}{\Gamma\left[\sum\limits_{i=1}^K (\alpha_i+\beta_i)\right]}\times\prod_{i=1}^K \frac{\Gamma(\alpha_i+\beta_i)}{\Gamma(\alpha_i)}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)