Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet eta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Particular values== {{further|Zeta constant}} *''Ξ·''(0) = {{1/2}}, the [[Abel summation|Abel sum]] of [[Grandi's series]] 1 β 1 + 1 β 1 + β―. *''Ξ·''(β1) = {{1/4}}, the Abel sum of [[1 β 2 + 3 β 4 + β―]]. *For positive integer ''k'', <math display="block">\eta(1-k) = \frac{2^k-1}{k} B^{+{}}_k,</math> where {{math|''B''{{su|p=+|b=''n''}}}} is the ''k''-th [[Bernoulli number]]. Also: *<math>\eta(1) = \ln2 </math>, this is the [[alternating harmonic series]] *<math>\eta(2) = {\pi^2 \over 12} </math> {{OEIS2C|A072691}} *<math>\eta(4) = {{7\pi^4} \over 720} \approx 0.94703283</math> *<math>\eta(6) = {{31\pi^6} \over 30240} \approx 0.98555109</math> *<math>\eta(8) = {{127\pi^8} \over 1209600} \approx 0.99623300</math> *<math>\eta(10) = {{73\pi^{10}} \over 6842880} \approx 0.99903951</math> *<math>\eta(12) = {{1414477\pi^{12}} \over {1307674368000}} \approx 0.99975769</math> The general form for even positive integers is: <math display="block">\eta(2n) = (-1)^{n+1}{{B_{2n}\pi^{2n} \left(2^{2n-1} - 1\right)} \over {(2n)!}}. </math> Taking the limit <math>n \to \infty</math>, one obtains <math>\eta (\infty) = 1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)