Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dirichlet kernel === Consider the well-known formula for the [[Dirichlet kernel]]:<ref>{{cite report |url=https://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/ChenGuo.pdf |title=A Treatment of the Dirichlet Integral Via the Methods of Real Analysis |author=Chen, Guo |date=26 June 2009}}</ref><math display="block"> D_n(x) = 1 + 2\sum_{k=1}^n \cos(2kx) = \frac{\sin[(2n+1)x]}{\sin(x)}. </math> It immediately follows that:<math display="block"> \int_0^{\frac{\pi}{2}} D_n(x)\, dx = \frac{\pi}{2}. </math> Define <math display="block">f(x) = \begin{cases} \frac{1}{x} - \frac{1}{\sin(x)} & x \neq 0 \\[6pt] 0 & x = 0 \end{cases} </math> Clearly, <math>f</math> is continuous when <math> x \in (0,\pi/2] ;</math> to see its continuity at 0 apply [[L'Hopital's Rule]]: <math display="block"> \lim_{x\to 0} \frac{\sin(x) - x}{x\sin(x)} = \lim_{x\to 0} \frac{\cos(x) - 1}{\sin(x) + x\cos(x)} = \lim_{x\to 0} \frac{-\sin(x)}{2\cos(x) - x\sin(x)} = 0. </math> Hence, <math>f</math> fulfills the requirements of the [[Riemann-Lebesgue Lemma]]. This means: <math display="block"> \lim_{\lambda \to \infty} \int_0^{\pi/2} f(x)\sin(\lambda x)dx = 0 \quad\Longrightarrow\quad \lim_{\lambda \to \infty} \int_0^{\pi/2} \frac{\sin(\lambda x)}{x}dx = \lim_{\lambda \to \infty} \int_0^{\pi/2} \frac{\sin(\lambda x)}{\sin(x)}dx. </math> (The form of the Riemann-Lebesgue Lemma used here is proven in the article cited.) We would like to compute: <math display="block"> \begin{align} \int_0^\infty \frac{\sin(t)}{t}dt = & \lim_{\lambda \to \infty} \int_0^{\lambda\frac{\pi}{2}} \frac{\sin(t)}{t}dt \\[6pt] = & \lim_{\lambda \to \infty} \int_0^{\frac{\pi}{2}} \frac{\sin(\lambda x)}{x}dx \\[6pt] = & \lim_{\lambda \to \infty} \int_0^{\frac{\pi}{2}} \frac{\sin(\lambda x)}{\sin(x)}dx \\[6pt] = & \lim_{n\to \infty} \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{\sin(x)}dx \\[6pt] = & \lim_{n\to \infty} \int_0^{\frac{\pi}{2}} D_n(x) dx = \frac{\pi}{2} \end{align} </math> However, we must justify switching the real limit in <math>\lambda</math> to the integral limit in <math>n,</math> which will follow from showing that the limit does exist. Using [[integration by parts]], we have: <math display="block"> \int_a^b \frac{\sin(x)}{x}dx = \int_a^b \frac{d(1-\cos(x))}{x}dx = \left. \frac{1-\cos(x)}{x}\right|_a^b + \int_a^b \frac{1-\cos(x)}{x^2}dx </math> Now, as <math>a \to 0</math> and <math> b \to \infty</math> the term on the left converges with no problem. See the [[List of limits#Trigonometric functions|list of limits of trigonometric functions]]. We now show that <math> \int_{-\infty}^{\infty} \frac{1-\cos(x)}{x^2}dx </math> is absolutely integrable, which implies that the limit exists.<ref>{{cite report |url=http://ramanujan.math.trinity.edu/rdaileda/teach/m4342f10/improper_integrals.pdf |title=Improper Integrals |author=R.C. Daileda}}</ref> First, we seek to bound the integral near the origin. Using the Taylor-series expansion of the cosine about zero, <math display="block"> 1 - \cos(x) = 1 - \sum_{k\geq 0}\frac{{(-1)^{(k+1)}}x^{2k}}{2k!} = \sum_{k\geq 1}\frac{{(-1)^{(k+1)}}x^{2k}}{2k!}. </math> Therefore, <math display="block"> \left|\frac{1 - \cos(x)}{x^2}\right| = \left|-\sum_{k\geq 0}\frac{x^{2k}}{2(k+1)!}\right| \leq \sum_{k\geq 0} \frac{|x|^k}{k!} = e^{|x|}. </math> Splitting the integral into pieces, we have <math display="block"> \int_{-\infty}^{\infty}\left|\frac{1-\cos(x)}{x^2}\right|dx \leq \int_{-\infty}^{-\varepsilon} \frac{2}{x^2}dx + \int_{-\varepsilon}^{\varepsilon} e^{|x|}dx + \int_{\varepsilon}^{\infty} \frac{2}{x^2}dx \leq K, </math> for some constant <math>K > 0.</math> This shows that the integral is absolutely integrable, which implies the original integral exists, and switching from <math>\lambda</math> to <math>n</math> was in fact justified, and the proof is complete.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)