Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Trivial extensions and independence of ''C''<sup>''k''</sup>(''K'')'s topology from ''U''==== {{anchor|Omitting the open set from notation}} Suppose <math>U</math> is an open subset of <math>\R^n</math> and <math>K \subseteq U</math> is a compact subset. By definition, elements of <math>C^k(K)</math> are functions with domain <math>U</math> (in symbols, <math>C^k(K) \subseteq C^k(U)</math>), so the space <math>C^k(K)</math> and its topology depend on <math>U;</math> to make this dependence on the open set <math>U</math> clear, temporarily denote <math>C^k(K)</math> by <math>C^k(K;U).</math> Importantly, changing the set <math>U</math> to a different open subset <math>U'</math> (with <math>K \subseteq U'</math>) will change the set <math>C^k(K)</math> from <math>C^k(K;U)</math> to <math>C^k(K;U'),</math><ref group="note">Exactly as with <math>C^k(K;U),</math> the space <math>C^k(K; U')</math> is defined to be the vector subspace of <math>C^k(U')</math> consisting of maps with [[#support of a function|support]] contained in <math>K</math> endowed with the subspace topology it inherits from <math>C^k(U')</math>.</ref> so that elements of <math>C^k(K)</math> will be functions with domain <math>U'</math> instead of <math>U.</math> Despite <math>C^k(K)</math> depending on the open set (<math>U \text{ or } U'</math>), the standard notation for <math>C^k(K)</math> makes no mention of it. This is justified because, as this subsection will now explain, the space <math>C^k(K;U)</math> is canonically identified as a subspace of <math>C^k(K;U')</math> (both algebraically and topologically). It is enough to explain how to canonically identify <math>C^k(K; U)</math> with <math>C^k(K; U')</math> when one of <math>U</math> and <math>U'</math> is a subset of the other. The reason is that if <math>V</math> and <math>W</math> are arbitrary open subsets of <math>\R^n</math> containing <math>K</math> then the open set <math>U := V \cap W</math> also contains <math>K,</math> so that each of <math>C^k(K; V)</math> and <math>C^k(K; W)</math> is canonically identified with <math>C^k(K; V \cap W)</math> and now by transitivity, <math>C^k(K; V)</math> is thus identified with <math>C^k(K; W).</math> So assume <math>U \subseteq V</math> are open subsets of <math>\R^n</math> containing <math>K.</math> Given <math>f \in C_c^k(U),</math> its {{em|'''trivial extension''' to <math>V</math>}} is the function <math>F : V \to \Complex</math> defined by: <math display=block>F(x) = \begin{cases} f(x) & x \in U, \\ 0 & \text{otherwise}. \end{cases}</math> This trivial extension belongs to <math>C^k(V)</math> (because <math>f \in C_c^k(U)</math> has compact support) and it will be denoted by <math>I(f)</math> (that is, <math>I(f) := F</math>). The assignment <math>f \mapsto I(f)</math> thus induces a map <math>I : C_c^k(U) \to C^k(V)</math> that sends a function in <math>C_c^k(U)</math> to its trivial extension on <math>V.</math> This map is a linear [[Injective function|injection]] and for every compact subset <math>K \subseteq U</math> (where <math>K</math> is also a compact subset of <math>V</math> since <math>K \subseteq U \subseteq V</math>), <math display=block>\begin{alignat}{4} I\left(C^k(K; U)\right) &~=~ C^k(K; V) \qquad \text{ and thus } \\ I\left(C_c^k(U)\right) &~\subseteq~ C_c^k(V). \end{alignat}</math> If <math>I</math> is restricted to <math>C^k(K; U)</math> then the following induced linear map is a [[homeomorphism]] (linear homeomorphisms are called {{em|[[TVS-isomorphism]]s}}): <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(K;V) \\ & f && \mapsto\,&& I(f) \\ \end{alignat}</math> and thus the next map is a [[topological embedding]]: <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(V) \\ & f && \mapsto\,&& I(f). \\ \end{alignat}</math> Using the injection <math display=block>I : C_c^k(U) \to C^k(V)</math> the vector space <math>C_c^k(U)</math> is canonically identified with its image in <math>C_c^k(V) \subseteq C^k(V).</math> Because <math>C^k(K; U) \subseteq C_c^k(U),</math> through this identification, <math>C^k(K; U)</math> can also be considered as a subset of <math>C^k(V).</math> Thus the topology on <math>C^k(K;U)</math> is independent of the open subset <math>U</math> of <math>\R^n</math> that contains <math>K,</math>{{sfn|Rudin|1991|pp=149-181}} which justifies the practice of writing <math>C^k(K)</math> instead of <math>C^k(K; U).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)