Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For compact Riemannian manifolds with boundary=== We are going to prove the following:{{citation needed|date=May 2024}} {{math theorem|math_statement= Let <math>\overline{\Omega}</math> be a <math>C^2</math> compact manifold with boundary with <math>C^1</math> metric tensor <math>g</math>. Let <math>\Omega</math> denote the manifold interior of <math>\overline{\Omega}</math> and let <math>\partial \Omega</math> denote the manifold boundary of <math>\overline{\Omega}</math>. Let <math>(\cdot, \cdot)</math> denote <math>L^2(\overline{\Omega})</math> inner products of functions and <math>\langle \cdot, \cdot \rangle</math> denote inner products of vectors. Suppose <math>u \in C^{1}(\overline{\Omega}, \mathbb{R})</math> and <math>X</math> is a <math>C^1</math> vector field on <math>\overline{\Omega}</math>. Then <math display="block"> (\operatorname{grad} u, X) = -(u, \operatorname{div} X) + \int_{\partial \Omega}u\langle X, N \rangle\,dS, </math> where <math>N</math> is the outward-pointing unit normal vector to <math>\partial \Omega</math>. }} '''Proof of Theorem.''' <ref name="Taylor 2011 p. "> {{cite book |last=Taylor |first=Michael E. |title=Applied Mathematical Sciences |chapter=Partial Differential Equations I |publisher=Springer New York |publication-place=New York, NY |year=2011 |volume=115 |isbn=978-1-4419-7054-1 |issn=0066-5452 |doi=10.1007/978-1-4419-7055-8 |pages=178β179}} </ref> We use the Einstein summation convention. By using a partition of unity, we may assume that <math>u</math> and <math>X</math> have compact support in a coordinate patch <math>O \subset \overline{\Omega}</math>. First consider the case where the patch is disjoint from <math>\partial \Omega</math>. Then <math>O</math> is identified with an open subset of <math>\mathbb{R}^n</math> and integration by parts produces no boundary terms: <math display="block"> \begin{align} (\operatorname{grad} u, X) &= \int_{O}\langle \operatorname{grad} u, X \rangle \sqrt{g}\,dx \\ &= \int_{O}\partial_j u X^j \sqrt{g}\,dx \\ &= -\int_{O}u \partial_j(\sqrt{g}X^j)\,dx \\ &= -\int_{O} u \frac{1}{\sqrt{g}}\partial_j(\sqrt{g}X^j)\sqrt{g}\,dx \\ &= (u, -\frac{1}{\sqrt{g}}\partial_j(\sqrt{g}X^j)) \\ &= (u, -\operatorname{div} X). \end{align} </math> In the last equality we used the Voss-Weyl coordinate formula for the divergence, although the preceding identity could be used to define <math>-\operatorname{div}</math> as the formal adjoint of <math>\operatorname{grad}</math>. Now suppose <math>O</math> intersects <math>\partial \Omega</math>. Then <math>O</math> is identified with an open set in <math>\mathbb{R}_{+}^n = \{x \in \mathbb{R}^n : x_n \geq 0\}</math>. We zero extend <math>u</math> and <math>X</math> to <math>\mathbb{R}_+^n</math> and perform integration by parts to obtain <math display="block"> \begin{align} (\operatorname{grad} u, X) &= \int_{O}\langle \operatorname{grad} u, X \rangle \sqrt{g}\,dx \\ &= \int_{\mathbb{R}_+^n}\partial_j u X^j \sqrt{g}\,dx \\ &= (u, -\operatorname{div} X) - \int_{\mathbb{R}^{n - 1}}u(x', 0)X^n(x', 0)\sqrt{g(x', 0)}\,dx', \end{align} </math> where <math>dx' = dx_1 \dots dx_{n - 1}</math>. By a variant of the [[straightening theorem for vector fields]], we may choose <math>O</math> so that <math>\frac{\partial}{\partial x_n}</math> is the inward unit normal <math>-N</math> at <math>\partial \Omega</math>. In this case <math>\sqrt{g(x', 0)}\,dx' = \sqrt{g_{\partial \Omega}(x')}\,dx' = dS</math> is the volume element on <math>\partial \Omega</math> and the above formula reads <math display="block"> (\operatorname{grad} u, X) = (u, -\operatorname{div} X) + \int_{\partial \Omega}u\langle X, N \rangle \,dS. </math> This completes the proof.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)