Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divisible group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Reduced abelian groups== An abelian group is said to be '''reduced''' if its only divisible subgroup is {0}. Every abelian group is the direct sum of a divisible subgroup and a reduced subgroup. In fact, there is a unique largest divisible subgroup of any group, and this divisible subgroup is a direct summand.<ref>Griffith, p.7</ref> This is a special feature of [[hereditary ring]]s like the integers '''Z''': the [[direct sum of modules|direct sum]] of injective modules is injective because the ring is [[Noetherian ring|Noetherian]], and the quotients of injectives are injective because the ring is hereditary, so any submodule generated by injective modules is injective. The converse is a result of {{harv|Matlis|1958}}: if every module has a unique maximal injective submodule, then the ring is hereditary. A complete classification of countable reduced periodic abelian groups is given by [[Ulm's theorem]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)