Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ehrhart polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Interpretation of coefficients== If {{math|''P''}} is [[closed set|closed]] (i.e. the boundary faces belong to {{math|''P''}}), some of the coefficients of {{math|''L''(''P'', ''t'')}} have an easy interpretation: * the leading coefficient, <math>L_d(P)</math>, is equal to the {{math|''d''}}-dimensional [[volume]] of {{math|''P''}}, divided by {{math|''d''(''L'')}} (see [[lattice (group)|lattice]] for an explanation of the content or covolume {{math|''d''(''L'')}} of a lattice); * the second coefficient, <math>L_{d-1}(P)</math>, can be computed as follows: the lattice {{math|''L''}} induces a lattice {{math|''L<sub>F</sub>''}} on any face {{math|''F''}} of {{math|''P''}}; take the {{math|(''d'' β 1)}}-dimensional volume of {{math|''F''}}, divide by {{math|2''d''(''L<sub>F</sub>'')}}, and add those numbers for all faces of {{math|''P''}}; * the constant coefficient, <math>L_0(P)</math>, is the [[Euler characteristic]] of {{math|''P''}}. When {{math|''P''}} is a closed [[convex polytope]], <math>L_0(P)=1.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)