Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relation to the gamma function=== If {{math|1=''k''<sup>2</sup> = ''λ''(''i''{{sqrt|''r''}})}} and <math>r \isin \mathbb{Q}^+</math> (where {{mvar|λ}} is the [[modular lambda function]]), then {{math|''K''(''k'')}} is expressible in closed form in terms of the [[gamma function]].<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 296</ref> For example, {{math|1=''r'' = 2}}, {{math|1=''r'' = 3}} and {{math|1=''r'' = 7}} give, respectively,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 298</ref> <math display="block">K\left(\sqrt{2}-1\right)=\frac{\Gamma \left(\frac18\right)\Gamma \left(\frac38\right)\sqrt{\sqrt{2}+1}}{8\sqrt[4]{2}\sqrt{\pi}},</math> and <math display="block">K\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)=\frac{1}{8\pi}\sqrt[4]{3}\,\sqrt[3]{4}\,\Gamma\biggl(\frac{1}{3}\biggr)^3</math> and <math display="block">K\left(\frac{3-\sqrt{7}}{4\sqrt{2}}\right)=\frac{\Gamma \left(\frac17\right)\Gamma \left(\frac27\right)\Gamma \left(\frac47\right)}{4\sqrt[4]{7}\pi}.</math> More generally, the condition that <math display="block">\frac{iK'}{K}=\frac{iK\left(\sqrt{1-k^2}\right)}{K(k)}</math> be in an [[Quadratic field|imaginary quadratic field]]<ref group="note">{{mvar|K}} can be [[Analytic continuation|analytically extended]] to the [[complex plane]].</ref> is sufficient.<ref>{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences|year=1949|volume=35|issue=7|page=373|doi=10.1073/PNAS.35.7.371|pmid=16588908|pmc=1063041|bibcode=1949PNAS...35..371C|s2cid=45071481}}</ref><ref>{{Cite journal|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Journal für die Reine und Angewandte Mathematik|year=1967|volume=227|pages=86–110}}</ref> For instance, if {{math|1=''k'' = ''e''<sup>5''πi''/6</sup>}}, then {{math|1={{sfrac|''iK''{{prime}}|''K''}} = ''e''<sup>2''πi''/3</sup>}} and<ref>{{Cite web|url=https://fungrim.org/topic/Legendre_elliptic_integrals/|title = Legendre elliptic integrals (Entry 175b7a)}}</ref> <math display="block">K\left(e^{5\pi i/6}\right)=\frac{e^{-\pi i/12}\Gamma ^3\left(\frac13\right)\sqrt[4]{3}}{4\sqrt[3]{2}\pi}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)