Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Empirical risk minimization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tilted empirical risk minimization == Tilted empirical risk minimization is a machine learning technique used to modify standard loss functions like squared error, by introducing a tilt parameter. This parameter dynamically adjusts the weight of data points during training, allowing the algorithm to focus on specific regions or characteristics of the data distribution. Tilted empirical risk minimization is particularly useful in scenarios with imbalanced data or when there is a need to emphasize errors in certain parts of the prediction space.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)