Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Enumeration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Properties ==== * There exists an enumeration for a set (in this sense) if and only if the set is [[countable]]. * If a set is enumerable it will have an [[uncountable]] infinity of different enumerations, except in the degenerate cases of the empty set or (depending on the precise definition) sets with one element. However, if one requires enumerations to be injective ''and'' allows only a limited form of partiality such that if ''f''(''n'') is defined then ''f''(''m'') must be defined for all ''m'' < ''n'', then a finite set of ''N'' elements has exactly ''N''! enumerations. * An enumeration ''e'' of a set ''S'' with domain <math>\mathbb{N}</math> induces a [[well-order]] β€ on that set defined by ''s'' β€ ''t'' if and only if <math>\min e^{-1}(s) \leq \min e^{-1}(t)</math>. Although the order may have little to do with the underlying set, it is useful when some order of the set is necessary.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)