Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs== Various proofs of the formula are possible. ===Using differentiation=== This proof shows that the quotient of the trigonometric and exponential expressions is the constant function one, so they must be equal (the exponential function is never zero,<ref name=Apostol>{{cite book |last=Apostol |first=Tom |title=Mathematical Analysis |page=20 |publisher=Pearson |date=1974 |isbn=978-0201002881}} Theorem 1.42</ref> so this is permitted).<ref>user02138 (https://math.stackexchange.com/users/2720/user02138), How to prove Euler's formula: $e^{i\varphi}=\cos(\varphi) +i\sin(\varphi)$?, URL (version: 2018-06-25): https://math.stackexchange.com/q/8612</ref> Consider the function {{math|''f''(''θ'')}} <math display="block"> f(\theta) = \frac{\cos\theta + i\sin\theta}{e^{i\theta}} = e^{-i\theta} \left(\cos\theta + i \sin\theta\right) </math> for real {{mvar|θ}}. Differentiating gives by the [[product rule]] <math display="block"> f'(\theta) = e^{-i\theta} \left(i\cos\theta - \sin\theta\right) - ie^{-i\theta} \left(\cos\theta + i\sin\theta\right) = 0</math> Thus, {{math|''f''(''θ'')}} is a constant. Since {{math|1=''f''(0) = 1}}, then {{math|1=''f''(''θ'') = 1}} for all real {{mvar|θ}}, and thus <math display="block">e^{i\theta} = \cos\theta + i\sin\theta.</math> ===Using power series=== [[File:Eulers-forrmula-standalone.svg|thumb|alt=Each successive term in the series rotates 90 degrees counter clockwise. The even-power terms are real, hence parallel to the real line, and the odd-power terms are imaginary, hence parallel to the imaginary axis. Plotting each term as a vectors in the complex plane lying end-to-end (vector addition) results in a piecewise-linear spiral starting from the origin and converging to the point (cos 2, sin 2) on the unit circle. |A plot of the first few terms of the Taylor series of {{math|''e''<sup>''it''</sup>}} for {{math|''t'' {{=}} 2}}. ]] Here is a proof of Euler's formula using [[Taylor series|power-series expansions]], as well as basic facts about the powers of {{mvar|i}}:<ref>{{cite book|url=https://books.google.com/books?id=PjK0F0T3NBoC&pg=PA428 |title=A Modern Introduction to Differential Equations |first=Henry J. |last=Ricardo |date=23 March 2016 |page=428|publisher=Elsevier Science |isbn=9780123859136 }}</ref> <math display="block">\begin{align} i^0 &= 1, & i^1 &= i, & i^2 &= -1, & i^3 &= -i, \\ i^4 &= 1, & i^5 &= i, & i^6 &= -1, & i^7 &= -i \\ &\vdots & &\vdots & &\vdots & &\vdots \end{align}</math> Using now the power-series definition from above, we see that for real values of {{mvar|x}} <math display="block">\begin{align} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots \\[8pt] &= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots \\[8pt] &= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots \right) + i\left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) \\[8pt] &= \cos x + i\sin x , \end{align}</math> where in the last step we recognize the two terms are the [[Taylor series#Trigonometric functions|Maclaurin series]] for {{math|cos ''x''}} and {{math|sin ''x''}}. [[Riemann series theorem|The rearrangement of terms is justified]] because each series is [[absolute convergence|absolutely convergent]]. ===Using polar coordinates=== Another proof<ref name=Strang>{{cite book |url=http://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/ |title=Calculus |first=Gilbert |last=Strang |page=389 |publisher=Wellesley-Cambridge |year=1991 |isbn=0-9614088-2-0}} Second proof on page.</ref> is based on the fact that all complex numbers can be expressed in [[polar coordinates]]. Therefore, [[for some]] {{mvar|r}} and {{mvar|θ}} depending on {{mvar|x}}, <math display="block">e^{i x} = r \left(\cos \theta + i \sin \theta\right).</math> No assumptions are being made about {{mvar|r}} and {{mvar|θ}}; they will be determined in the course of the proof. From any of the definitions of the exponential function it can be shown that the derivative of {{math|''e''<sup>''ix''</sup>}} is {{math|''ie''<sup>''ix''</sup>}}. Therefore, differentiating both sides gives <math display="block">i e ^{ix} = \left(\cos \theta + i \sin \theta\right) \frac{dr}{dx} + r \left(-\sin \theta + i \cos \theta\right) \frac{d\theta}{dx}.</math> Substituting {{math|''r''(cos ''θ'' + ''i'' sin ''θ'')}} for {{math|''e<sup>ix</sup>''}} and equating real and imaginary parts in this formula gives {{math|1=''{{sfrac|dr|dx}}'' = 0}} and {{math|1=''{{sfrac|dθ|dx}}'' = 1}}. Thus, {{mvar|r}} is a constant, and {{mvar|θ}} is {{math|''x'' + ''C''}} for some constant {{mvar|C}}. The initial values {{math|1=''r''(0) = 1}} and {{math|1=''θ''(0) = 0}} come from {{math|1=''e''<sup>0''i''</sup> = 1}}, giving {{math|1=''r'' = 1}} and {{math|1=''θ'' = ''x''}}. This proves the formula <math display="block">e^{i \theta} = 1(\cos \theta +i \sin \theta) = \cos \theta + i \sin \theta.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)