Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Closed-form expression <span class="anchor" id="Binet's formula"></span>=== Like every [[sequence]] defined by a homogeneous [[linear recurrence with constant coefficients]], the Fibonacci numbers have a [[closed-form expression]].<ref>{{cite book |title=Discrete Mathematics with Ducks |first=sarah-marie|last=belcastro|author-link=Sarah-Marie Belcastro |edition=2nd |publisher=CRC Press |year=2018 |isbn=978-1-351-68369-2 |page=260 |url=https://books.google.com/books?id=xoqADwAAQBAJ}} [https://books.google.com/books?id=xoqADwAAQBAJ&pg=PA260 Extract of page 260]</ref> It has become known as '''Binet's formula''', named after French mathematician [[Jacques Philippe Marie Binet]], though it was already known by [[Abraham de Moivre]] and [[Daniel Bernoulli]]:<ref>{{citation | last1 = Beutelspacher | first1 = Albrecht | last2 = Petri | first2 = Bernhard | contribution = Fibonacci-Zahlen | doi = 10.1007/978-3-322-85165-9_6 | pages = 87β98 | publisher = Vieweg+Teubner Verlag | title = Der Goldene Schnitt | series = Einblick in die Wissenschaft | year = 1996| isbn = 978-3-8154-2511-4 }}</ref> <math display=block> F_n = \frac{\varphi^n-\psi^n}{\varphi-\psi} = \frac{\varphi^n-\psi^n}{\sqrt 5}, </math> where <math display=block> \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.61803\,39887\ldots </math> is the [[golden ratio]], and <math>\psi</math> is its [[Conjugate (square roots)|conjugate]]:{{Sfn | Ball | 2003 | p = 156}} <math display=block> \psi = \frac{1 - \sqrt{5}}{2} = 1 - \varphi = - {1 \over \varphi} \approx -0.61803\,39887\ldots. </math> Since <math>\psi = -\varphi^{-1}</math>, this formula can also be written as <math display=block> F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt 5} = \frac{\varphi^n - (-\varphi)^{-n}}{2\varphi - 1}. </math> To see the relation between the sequence and these constants,{{Sfn | Ball | 2003 | pp = 155β156}} note that <math>\varphi</math> and <math>\psi</math> are both solutions of the equation <math display=inline>x^2 = x + 1</math> and thus <math>x^n = x^{n-1} + x^{n-2},</math> so the powers of <math>\varphi</math> and <math>\psi</math> satisfy the Fibonacci recursion. In other words, <math display=block>\begin{align} \varphi^n &= \varphi^{n-1} + \varphi^{n-2}, \\[3mu] \psi^n &= \psi^{n-1} + \psi^{n-2}. \end{align}</math> It follows that for any values {{mvar|a}} and {{mvar|b}}, the sequence defined by <math display=block>U_n=a \varphi^n + b \psi^n</math> satisfies the same recurrence, <math display=block>\begin{align} U_n &= a\varphi^n + b\psi^n \\[3mu] &= a(\varphi^{n-1} + \varphi^{n-2}) + b(\psi^{n-1} + \psi^{n-2}) \\[3mu] &= a\varphi^{n-1} + b\psi^{n-1} + a\varphi^{n-2} + b\psi^{n-2} \\[3mu] &= U_{n-1} + U_{n-2}. \end{align}</math> If {{mvar|a}} and {{mvar|b}} are chosen so that {{math|1=''U''<sub>0</sub> = 0}} and {{math|1=''U''<sub>1</sub> = 1}} then the resulting sequence {{math|''U''<sub>''n''</sub>}} must be the Fibonacci sequence. This is the same as requiring {{mvar|a}} and {{mvar|b}} satisfy the system of equations: <math display=block> \left\{\begin{align} a + b &= 0 \\ \varphi a + \psi b &= 1\end{align}\right. </math> which has solution <math display=block> a = \frac{1}{\varphi-\psi} = \frac{1}{\sqrt 5},\quad b = -a, </math> producing the required formula. Taking the starting values {{math|''U''<sub>0</sub>}} and {{math|''U''<sub>1</sub>}} to be arbitrary constants, a more general solution is: <math display=block> U_n = a\varphi^n + b\psi^n </math> where <math display=block>\begin{align} a&=\frac{U_1-U_0\psi}{\sqrt 5}, \\[3mu] b&=\frac{U_0\varphi-U_1}{\sqrt 5}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)