Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Four-stroke engine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Fuel considerations== A problem with compressed charge engines is that the temperature rise of the compressed charge can cause pre-ignition. If this occurs at the wrong time and is too energetic, it can damage the engine. Different fractions of petroleum have widely varying flash points (the temperatures at which the fuel may self-ignite). This must be taken into account in engine and fuel design. The tendency for the compressed fuel mixture to ignite early is limited by the chemical composition of the fuel. There are several grades of fuel to accommodate differing performance levels of engines. The fuel is altered to change its self-ignition temperature. There are several ways to do this. As engines are designed with higher [[compression ratio]]s the result is that pre-ignition is much more likely to occur since the fuel mixture is compressed to a higher temperature prior to deliberate ignition. The higher temperature more effectively evaporates fuels such as gasoline, which increases the efficiency of the compression engine. Higher compression ratios also mean that the distance that the piston can push to produce power is greater (which is called the [[expansion ratio]]). The octane rating of a given fuel is a measure of the fuel's resistance to self-ignition. A fuel with a higher numerical octane rating allows for a higher compression ratio, which extracts more energy from the fuel and more effectively converts that energy into useful work while at the same time preventing engine damage from pre-ignition. High octane fuel is also more expensive. Many modern four-stroke engines employ [[gasoline direct injection]] or GDI. In a gasoline direct-injected engine, the injector nozzle protrudes into the combustion chamber. The direct fuel injector injects gasoline under a very high pressure into the cylinder during the compression stroke, when the piston is closer to the top.<ref>{{cite web|url=https://www.testingautos.com/car_care/four-stroke-engine.html |title= Four-stroke engine: how it works, animation| website= testingautos.com| access-date= January 25, 2020}}</ref> Diesel engines by their nature do not have concerns with pre-ignition. They have a concern with whether or not combustion can be started. The description of how likely diesel fuel is to ignite is called the Cetane rating. Because diesel fuels are of low volatility, they can be very hard to start when cold. Various techniques are used to start a cold diesel engine, the most common being the use of a [[Glow plug (diesel engine)|glow plug]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)