Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Four-vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Pure boosts in an arbitrary direction==== [[File:Standard conf.png|right|thumb|300px|Standard configuration of coordinate systems; for a Lorentz boost in the ''x''-direction.]] For two frames moving at constant relative three-velocity '''v''' (not four-velocity, [[#Four-velocity|see below]]), it is convenient to denote and define the relative velocity in units of ''c'' by: <math display="block"> \boldsymbol{\beta} = (\beta_1,\,\beta_2,\,\beta_3) = \frac{1}{c}(v_1,\,v_2,\,v_3) = \frac{1}{c}\mathbf{v} \,. </math> Then without rotations, the matrix '''Ξ''' has components given by:<ref>Gravitation, J.B. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISAN 0-7167-0344-0</ref> <math display="block">\begin{align} \Lambda_{00} &= \gamma, \\ \Lambda_{0i} = \Lambda_{i0} &= -\gamma \beta_{i}, \\ \Lambda_{ij} = \Lambda_{ji} &= (\gamma - 1)\frac{\beta_{i}\beta_{j}}{\beta^2} + \delta_{ij} = (\gamma - 1)\frac{v_i v_j}{v^2} + \delta_{ij}, \\ \end{align}</math> where the [[Lorentz factor]] is defined by: <math display="block">\gamma = \frac{1}{\sqrt{1 - \boldsymbol{\beta}\cdot\boldsymbol{\beta}}} \,,</math> and {{math|''Ξ΄<sub>ij</sub>''}} is the [[Kronecker delta]]. Contrary to the case for pure rotations, the spacelike and timelike components are mixed together under boosts. For the case of a boost in the ''x''-direction only, the matrix reduces to;<ref>Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8</ref><ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0</ref> <math display="block"> \begin{pmatrix} A'^0 \\ A'^1 \\ A'^2 \\ A'^3 \end{pmatrix} = \begin{pmatrix} \cosh\phi &-\sinh\phi & 0 & 0 \\ -\sinh\phi & \cosh\phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} A^0 \\ A^1 \\ A^2 \\ A^3 \end{pmatrix} </math> Where the [[rapidity]] {{math|''Ο''}} expression has been used, written in terms of the [[hyperbolic function]]s: <math display="block">\gamma = \cosh \phi</math> This Lorentz matrix illustrates the boost to be a ''[[hyperbolic rotation]]'' in four dimensional spacetime, analogous to the circular rotation above in three-dimensional space.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)