Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Formula=== Given a functional <math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math> and a function <math>\phi(\boldsymbol{r})</math> that vanishes on the boundary of the region of integration, from a previous section [[#Definition|Definition]], <math display="block">\begin{align} \int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} & = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ & = \int \left( \frac{\partial f}{\partial\rho} \, \phi + \frac{\partial f}{\partial\nabla\rho} \cdot \nabla\phi \right) d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi + \nabla \cdot \left( \frac{\partial f}{\partial\nabla\rho} \, \phi \right) - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . \end{align}</math> The second line is obtained using the [[total derivative]], where {{math|''βf'' /''ββΟ''}} is a [[Matrix calculus#Scalar-by-vector|derivative of a scalar with respect to a vector]].<ref group="Note">For a three-dimensional Cartesian coordinate system, <math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref> The third line was obtained by use of a [[Divergence#Properties|product rule for divergence]]. The fourth line was obtained using the [[divergence theorem]] and the condition that <math>\phi=0</math> on the boundary of the region of integration. Since <math>\phi</math> is also an arbitrary function, applying the [[fundamental lemma of calculus of variations]] to the last line, the functional derivative is <math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math> where {{math|1=''Ο'' = ''Ο''('''''r''''')}} and {{math|1=''f'' = ''f'' ('''''r''''', ''Ο'', ∇''Ο'')}}. This formula is for the case of the functional form given by {{math|''F''[''Ο'']}} at the beginning of this section. For other functional forms, the definition of the functional derivative can be used as the starting point for its determination. (See the example [[#Coulomb potential energy functional|Coulomb potential energy functional]].) The above equation for the functional derivative can be generalized to the case that includes higher dimensions and higher order derivatives. The functional would be, <math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math> where the vector {{math|'''''r''''' ∈ '''R'''<sup>''n''</sup>}}, and {{math|∇<sup>(''i'')</sup>}} is a tensor whose {{math|''n<sup>i</sup>''}} components are partial derivative operators of order {{math|''i''}}, <math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \dots, \alpha_i = 1, 2, \dots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|∇<sup>(2)</sup>}} has components, <math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} </math>where <math>\alpha</math> and <math>\beta</math> can be <math>1,2,3</math>.</ref> An analogous application of the definition of the functional derivative yields <math display="block">\begin{align} \frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ &{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . \end{align}</math> In the last two equations, the {{math|''n<sup>i</sup>''}} components of the tensor <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> are partial derivatives of {{math|''f''}} with respect to partial derivatives of ''Ο'', <math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } </math> where <math> \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\,i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } </math>, and the tensor scalar product is, <math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math> <ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is, <math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \, \frac {\partial f} {\partial \rho_{\alpha \beta} } , </math>where <math>\rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} }</math>.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)