Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to the gamma function== The integrand is an [[even function]], <math display="block">\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_0^\infty e^{-x^2} dx</math> Thus, after the change of variable <math display="inline">x = \sqrt{t}</math>, this turns into the Euler integral <math display="block">2 \int_0^\infty e^{-x^2} dx = 2\int_0^\infty \frac{1}{2}\ e^{-t} \ t^{-\frac{1}{2}} dt = \Gamma{\left(\frac{1}{2}\right)} = \sqrt{\pi}</math> where <math display="inline"> \Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt </math> is the [[gamma function]]. This shows why the [[factorial]] of a half-integer is a rational multiple of <math display="inline">\sqrt \pi</math>. More generally, <math display="block">\int_0^\infty x^n e^{-ax^b} dx = \frac{\Gamma{\left((n+1)/b\right)}}{b a^{(n+1)/b}}, </math> which can be obtained by substituting <math>t=a x^b</math> in the integrand of the gamma function to get <math display="inline"> \Gamma(z) = a^z b \int_0^{\infty} x^{bz-1} e^{-a x^b} dx </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)