Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalence of inequalities between means of opposite signs=== Suppose an average between power means with exponents {{mvar|p}} and {{mvar|q}} holds: <math display="block">\left(\sum_{i=1}^n w_i x_i^p\right)^{1/p} \geq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}</math> applying this, then: <math display="block">\left(\sum_{i=1}^n\frac{w_i}{x_i^p}\right)^{1/p} \geq \left(\sum_{i=1}^n\frac{w_i}{x_i^q}\right)^{1/q}</math> We raise both sides to the power of β1 (strictly decreasing function in positive reals): <math display="block">\left(\sum_{i=1}^nw_ix_i^{-p}\right)^{-1/p} = \left(\frac{1}{\sum_{i=1}^nw_i\frac{1}{x_i^p}}\right)^{1/p} \leq \left(\frac{1}{\sum_{i=1}^nw_i\frac{1}{x_i^q}}\right)^{1/q} = \left(\sum_{i=1}^nw_ix_i^{-q}\right)^{-1/q}</math> We get the inequality for means with exponents {{math|β''p''}} and {{math|β''q''}}, and we can use the same reasoning backwards, thus proving the inequalities to be equivalent, which will be used in some of the later proofs.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)