Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geographic coordinate conversion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== From ECEF to geodetic coordinates === ====Conversion for the longitude==== The conversion of ECEF coordinates to longitude is: : <math>\lambda = \operatorname{atan2}(Y,X)</math>. where [[atan2]] is the quadrant-resolving arc-tangent function. The geocentric longitude and geodetic longitude have the same value; this is true for Earth and other similar shaped planets because they have a large amount of rotational symmetry around their spin axis (see [[triaxial ellipsoidal longitude]] for a generalization). ==== Simple iterative conversion for latitude and height ==== The conversion for the latitude and height involves a circular relationship involving ''N'', which is a function of latitude: :<math>\frac{Z}{p} \cot \phi = 1 - \frac{e^2 N}{N + h}</math>, :<math>h=\frac{p}{\cos\phi} - N</math>. It can be solved iteratively,<ref name=osgb>A guide to coordinate systems in Great Britain. This is available as a pdf document at {{cite web|url=http://www.ordnancesurvey.co.uk/oswebsite/gps/information/coordinatesystemsinfo/guidecontents |title=ordnancesurvey.co.uk |access-date=2012-01-11 |url-status=dead |archive-url=https://web.archive.org/web/20120211075826/http://www.ordnancesurvey.co.uk/oswebsite/gps/information/coordinatesystemsinfo/guidecontents/ |archive-date=2012-02-11 }} Appendices B1, B2</ref><ref name=osborne>Osborne, P (2008). [http://mercator.myzen.co.uk/mercator.pdf The Mercator Projections] {{webarchive|url=https://web.archive.org/web/20120118224152/http://mercator.myzen.co.uk/mercator.pdf |date=2012-01-18 }} Section 5.4</ref> for example, starting with a first guess ''h''≈0 then updating ''N''. More elaborate methods are shown below. The procedure is, however, sensitive to small accuracy due to <math>N</math> and <math>h</math> being maybe 10{{sup|6}} apart.<ref>[https://web.archive.org/web/20080920155754/http://www.ferris.edu/faculty/burtchr/papers/cartesian_to_geodetic.pdf R. Burtch, A Comparison of Methods Used in Rectangular to Geodetic Coordinate Transformations.]</ref><ref>{{cite journal |last1=Featherstone |first1=W. E. |last2=Claessens |first2=S. J. |title=Closed-Form Transformation between Geodetic and Ellipsoidal Coordinates |journal=Stud. Geophys. Geod. |volume=52 |issue=1 |pages=1–18 |year=2008 |doi=10.1007/s11200-008-0002-6 |bibcode=2008StGG...52....1F |hdl=20.500.11937/11589 |s2cid=59401014 |hdl-access=free }}</ref> <!-- There are several methods that solve the equation; two are shown. --> ==== Newton–Raphson method ==== The following Bowring's irrational geodetic-latitude equation,<ref>{{cite journal |last=Bowring |first=B. R. |title=Transformation from Spatial to Geographical Coordinates |journal=Surv. Rev. |volume=23 |issue=181 |pages=323–327 |year=1976 |doi=10.1179/003962676791280626 }}</ref> derived simply from the above properties, is efficient to be solved by [[Newton–Raphson]] iteration method:<ref>{{cite journal |last=Fukushima |first=T. |title=Fast Transform from Geocentric to Geodetic Coordinates |journal=J. Geod. |volume=73 |issue=11 |pages=603–610 |year=1999 |doi=10.1007/s001900050271 |bibcode=1999JGeod..73..603F |s2cid=121816294 }} (Appendix B)</ref><ref>{{cite book|first1=J. J. |title=Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997|volume=2|pages=646–650|last1=Sudano|doi=10.1109/NAECON.1997.622711|chapter=An exact conversion from an earth-centered coordinate system to latitude, longitude and altitude|year=1997|isbn=0-7803-3725-5|s2cid=111028929 }}</ref> : <math>\kappa - 1 - \frac{e^2 a\kappa}{\sqrt{p^2 + \left(1 - e^2\right) Z^2 \kappa^2}} = 0,</math> where <math>\kappa = \frac{p}{Z} \tan \phi</math> and <math>p = \sqrt{X^2 + Y^2}</math> as before. The height is calculated as: : <math>\begin{align} h &= e^{-2} \left(\kappa^{-1} - {\kappa_0}^{-1}\right) \sqrt{p^2 + Z^2 \kappa^2}, \\ \kappa_0 &\triangleq \left(1 - e^2\right)^{-1}. \end{align}</math> The iteration can be transformed into the following calculation: : <math>\kappa_{i+1} = \frac{c_i + \left(1 - e^2\right) Z^2 \kappa_i^3}{c_i - p^2} = 1 + \frac{p^2 + \left(1 - e^2\right) Z^2 \kappa_i^3}{c_i - p^2},</math> where <math>c_i = \frac{\left(p^2 + \left(1 - e^2\right) Z^2 \kappa_i ^2\right)^\frac{3}{2}}{ae^2} .</math> The constant <math>\,\kappa_0</math> is a good starter value for the iteration when <math>h \approx 0</math>. Bowring showed that the single iteration produces a sufficiently accurate solution. He used extra trigonometric functions in his original formulation. <!-- : <math>\kappa \approx \kappa_1 = \left(c + \frac{z^2}{1 - e^2 }\right)/\left(c - \left(1 - e^2\right)\left(x^2 + y^2\right)\right),</math> where : <math>c = \frac{\left(\left(1 - e^2\right)\left(x^2 + y^2\right) + z^2\right)^\frac{3}{2}}{ae^2 \sqrt{1 - e^2}}.</math> --><!-- For <math>h = 0</math>, <math>\kappa = \frac{1}{1 - e^2}</math>, which is a good starter for the iteration. Bowring showed that the single iteration produces the sufficiently accurate solution under the condition of <math>h \approx 0</math>. --> ==== Ferrari's solution ==== The quartic equation of <math>\kappa</math>, derived from the above, <!--for this transformation--> can be solved by [[Quartic equation#Ferrari.27s solution|Ferrari's solution]]<ref>{{cite journal|first1=H. |last1=Vermeille, H.|title=Direct Transformation from Geocentric to Geodetic Coordinates|journal= J. Geod.|volume=76|number=8|pages=451–454 |year= 2002|doi=10.1007/s00190-002-0273-6|s2cid=120075409 }}</ref><ref>{{cite journal|first1=Laureano|last1=Gonzalez-Vega|first2=Irene|last2=PoloBlanco|title=A symbolic analysis of Vermeille and Borkowski polynomials for transforming 3D Cartesian to geodetic coordinates|journal=J. Geod.|volume=83|number=11|pages=1071–1081|doi=10.1007/s00190-009-0325-2|year=2009|bibcode=2009JGeod..83.1071G |s2cid=120864969 }}</ref> to yield: : <math> \begin{align} \zeta &= \left(1 - e^2\right)\frac{z^2}{a^2} ,\\[4pt] \rho &= \frac{1}{6}\left(\frac{p^2}{a^2} + \zeta - e^4\right) ,\\[4pt] s &= \frac{e^4 \zeta p^2}{4\rho^3 a^2} ,\\[4pt] t &= \sqrt[3]{1 + s + \sqrt{s(s + 2)}} ,\\[4pt] u &= \rho \left(t + 1 + \frac{1}{t}\right) ,\\[4pt] v &= \sqrt{u^2 + e^4 \zeta} ,\\[4pt] w &= e^2 \frac{u + v - \zeta}{2v} ,\\[4pt] \kappa &= 1 + e^2 \frac{\sqrt{u + v + w^2} + w}{u + v}. \end{align} </math> ===== The application of Ferrari's solution ===== A number of techniques and algorithms are available but the most accurate, according to Zhu,<ref>{{cite journal|first1=J.|last1=Zhu|title=Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates|journal=IEEE Transactions on Aerospace and Electronic Systems|volume=30|issue=3|year=1994|pages=957–961|doi=10.1109/7.303772|bibcode=1994ITAES..30..957Z }}</ref> is the following procedure established by Heikkinen,<ref>{{cite journal|first1=M.|last1=Heikkinen|title=Geschlossene formeln zur berechnung räumlicher geodätischer koordinaten aus rechtwinkligen koordinaten.|journal=Z. Vermess.|volume=107|year=1982|pages=207–211|language=de}}</ref> as cited by Zhu. This overlaps with above. It is assumed that geodetic parameters <math>\{a,\, b,\, e\}</math> are known : <math>\begin{align} a &= 6378137.0 \text{ m. Earth Equatorial Radius} \\[3pt] b &= 6356752.3142 \text{ m. Earth Polar Radius} \\[3pt] e^2 &= \frac{a^2-b^2}{a^2} \\[3pt] e'^2 &= \frac{a^2 - b^2}{b^2} \\[3pt] p &= \sqrt{X^2 + Y^2} \\[3pt] F &= 54b^2 Z^2 \\[3pt] G &= p^2 + \left(1 - e^2\right)Z^2 - e^2\left(a^2 - b^2\right) \\[3pt] c &= \frac{e^4 Fp^2}{G^3} \\[3pt] s &= \sqrt[3]{1 + c + \sqrt{c^2 + 2c}} \\[3pt] k &= s + 1 + \frac{1}{s}\\[3pt] P &= \frac{F}{3 k^2 G^2} \\[3pt] Q &= \sqrt{1 + 2e^4 P} \\[3pt] r_0 &= \frac{-Pe^2 p}{1 + Q} + \sqrt{\frac{1}{2} a^2\left(1 + \frac{1}{Q}\right) - \frac{P\left(1 - e^2\right)Z^2}{Q(1 + Q)} - \frac{1}{2}Pp^2} \\[3pt] U &= \sqrt{\left(p - e^2 r_0\right)^2 + Z^2} \\[3pt] V &= \sqrt{\left(p - e^2 r_0\right)^2 + \left(1 - e^2\right)Z^2} \\[3pt] z_0 &= \frac{b^2 Z}{aV} \\[3pt] h &= U\left(1 - \frac{b^2}{aV}\right) \\[3pt] \phi &= \arctan\left[\frac{Z + e'^2 z_0}{p}\right] \\[3pt] \lambda &= \operatorname{arctan2}[Y,\, X] \end{align}</math> Note: [[atan2|arctan2]][Y, X] is the four-quadrant inverse tangent function. ==== Power series ==== For small {{math|e<sup>2</sup>}} the power series :<math>\kappa = \sum_{i\ge 0} \alpha_i e^{2i}</math> starts with :<math>\begin{align} \alpha_0 &= 1; \\ \alpha_1 &= \frac{a}{\sqrt{Z^2 + p^2}}; \\ \alpha_2 &= \frac{aZ^2\sqrt{Z^2 + p^2} + 2a^2 p^2}{2\left(Z^2 + p^2\right)^2}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)