Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometry of numbers
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== * Matthias Beck, Sinai Robins. ''[[Computing the Continuous Discretely|Computing the continuous discretely: Integer-point enumeration in polyhedra]]'', [[Undergraduate Texts in Mathematics]], Springer, 2007. * {{cite journal|author=Enrico Bombieri|author-link=Enrico Bombieri|author2=Vaaler, J.|title = On Siegel's lemma|journal = Inventiones Mathematicae|volume = 73|issue = 1|date = Feb 1983|pages = 11–32|doi = 10.1007/BF01393823|bibcode=1983InMat..73...11B|s2cid=121274024}} * {{cite book |author=Enrico Bombieri |author-link=Enrico Bombieri |author2=Walter Gubler |name-list-style=amp |title=Heights in Diophantine Geometry |publisher=Cambridge U. P. |year=2006}} * [[J. W. S. Cassels]]. ''An Introduction to the Geometry of Numbers''. Springer Classics in Mathematics, Springer-Verlag 1997 (reprint of 1959 and 1971 Springer-Verlag editions). * [[John Horton Conway]] and [[Neil Sloane|N. J. A. Sloane]], ''Sphere Packings, Lattices and Groups'', Springer-Verlag, NY, 3rd ed., 1998. * R. J. Gardner, ''Geometric tomography,'' Cambridge University Press, New York, 1995. Second edition: 2006. * [[Peter M. Gruber|P. M. Gruber]], ''Convex and discrete geometry,'' Springer-Verlag, New York, 2007. * P. M. Gruber, J. M. Wills (editors), ''Handbook of convex geometry. Vol. A. B,'' North-Holland, Amsterdam, 1993. * [[Martin Grötschel|M. Grötschel]], [[László Lovász|Lovász, L.]], [[Alexander Schrijver|A. Schrijver]]: ''Geometric Algorithms and Combinatorial Optimization'', Springer, 1988 * {{cite book | author = Hancock, Harris | title = Development of the Minkowski Geometry of Numbers | year = 1939 | publisher = Macmillan}} (Republished in 1964 by Dover.) * [[Edmund Hlawka]], Johannes Schoißengeier, Rudolf Taschner. ''Geometric and Analytic Number Theory''. Universitext. Springer-Verlag, 1991. * {{citation |last1=Kalton|first1=Nigel J.|author1-link=Nigel Kalton |last2=Peck|first2=N. Tenney |last3=Roberts|first3=James W. | title = An F-space sampler | series = London Mathematical Society Lecture Note Series, 89 | publisher = Cambridge University Press| location = Cambridge | year = 1984| pages = xii+240| isbn = 0-521-27585-7 | mr = 0808777}} * [[Gerrit Lekkerkerker|C. G. Lekkerkererker]]. ''Geometry of Numbers''. Wolters-Noordhoff, North Holland, Wiley. 1969. * {{cite journal | author = Lenstra, A. K. | author-link = Arjen Lenstra | author2 = Lenstra, H. W. Jr. | author2-link = Hendrik Lenstra | author3 = Lovász, L. | author3-link = László Lovász | title = Factoring polynomials with rational coefficients | journal = [[Mathematische Annalen]] | volume = 261 | year = 1982 | issue = 4 | pages = 515–534 | hdl = 1887/3810 | doi = 10.1007/BF01457454 | mr = 0682664| s2cid = 5701340 | url = http://infoscience.epfl.ch/record/164484/files/nscan4.PDF }} * [[László Lovász|Lovász, L.]]: ''An Algorithmic Theory of Numbers, Graphs, and Convexity'', CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986 * {{Springer|id=G/g044350|title=Geometry of numbers|first=A.V. |last=Malyshev}} * {{Citation | last1=Minkowski | first1=Hermann | author1-link=Hermann Minkowski | title=Geometrie der Zahlen | url=https://archive.org/details/geometriederzahl00minkrich | publisher=R. G. Teubner | location=Leipzig and Berlin | mr=0249269 | year=1910 | jfm=41.0239.03 | access-date=2016-02-28}} * [[Wolfgang M. Schmidt]]. ''Diophantine approximation''. Lecture Notes in Mathematics 785. Springer. (1980 [1996 with minor corrections]) * {{cite book | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=[[Springer-Verlag]] | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020}} * {{cite book | author = Siegel, Carl Ludwig | author-link = Carl Ludwig Siegel | title = Lectures on the Geometry of Numbers | url = https://archive.org/details/lecturesongeomet0000sieg | url-access = registration | year = 1989 | publisher = [[Springer-Verlag]]}} * Rolf Schneider, ''Convex bodies: the Brunn-Minkowski theory,'' Cambridge University Press, Cambridge, 1993. * Anthony C. Thompson, ''Minkowski geometry,'' Cambridge University Press, Cambridge, 1996. * [[Hermann Weyl]]. Theory of reduction for arithmetical equivalence . Trans. Amer. Math. Soc. 48 (1940) 126–164. {{doi|10.1090/S0002-9947-1940-0002345-2}} * Hermann Weyl. Theory of reduction for arithmetical equivalence. II . Trans. Amer. Math. Soc. 51 (1942) 203–231. {{doi|10.2307/1989946}} {{Number theory-footer}} [[Category:Geometry of numbers| ]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)