Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Graphics processing unit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 2010s === In 2010, Nvidia partnered with [[Audi]] to power their cars' dashboards, using the [[Tegra]] GPU to provide increased functionality to cars' navigation and entertainment systems.<ref>{{Cite web|url=https://news.softpedia.com/news/NVIDIA-Tegra-Inside-Every-Audi-2010-Vehicle-131529.shtml|title=NVIDIA Tegra Inside Every Audi 2010 Vehicle|last=Teglet|first=Traian|date=8 January 2010|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20161004185422/https://news.softpedia.com/news/NVIDIA-Tegra-Inside-Every-Audi-2010-Vehicle-131529.shtml|archive-date=2016-10-04}}</ref> Advances in GPU technology in cars helped advance [[autonomous car|self-driving technology]].<ref>{{Cite web|url=https://www.digitaltrends.com/cars/nvidia-gpu-driverless-car/|title=School's in session β Nvidia's driverless system learns by watching|date=2016-04-30|language=en-US|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160501203712/https://www.digitaltrends.com/cars/nvidia-gpu-driverless-car/|archive-date=2016-05-01}}</ref> AMD's [[Radeon HD 6000 series]] cards were released in 2010, and in 2011 AMD released its 6000M Series discrete GPUs for mobile devices.<ref>{{Cite web |title=AMD Radeon HD 6000M series β don't call it ATI! |url=https://www.cnet.com/news/amd-radeon-hd-6000m-series-dont-call-it-ati/ |url-status=live |archive-url=https://web.archive.org/web/20161011195008/https://www.cnet.com/news/amd-radeon-hd-6000m-series-dont-call-it-ati/ |archive-date=2016-10-11 |access-date=2016-08-03 |website=CNET}}</ref> The Kepler line of graphics cards by Nvidia were released in 2012 and were used in the Nvidia's 600 and 700 series cards. A feature in this GPU microarchitecture included GPU boost, a technology that adjusts the clock-speed of a video card to increase or decrease it according to its power draw.<ref>{{Cite web|url=https://www.bit-tech.net/hardware/2012/03/22/nvidia-geforce-gtx-680-2gb-review/4|title=Nvidia GeForce GTX 680 2GB Review|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160911210258/https://www.bit-tech.net/hardware/2012/03/22/nvidia-geforce-gtx-680-2gb-review/4|archive-date=2016-09-11}}</ref> The [[Kepler (microarchitecture)|Kepler microarchitecture]] was manufactured. The [[PlayStation 4 technical specifications|PS4]] and [[Xbox One]] were released in 2013; they both use GPUs based on [[Radeon HD 7000 series|AMD's Radeon HD 7850 and 7790]].<ref>{{Cite web|url=https://www.extremetech.com/gaming/156273-xbox-720-vs-ps4-vs-pc-how-the-hardware-specs-compare|title=Xbox One vs. PlayStation 4: Which game console is best? |website=ExtremeTech|date=20 November 2015 |access-date=2019-05-13}}</ref> Nvidia's Kepler line of GPUs was followed by the [[Maxwell (microarchitecture)|Maxwell]] line, manufactured on the same process. Nvidia's 28 nm chips were manufactured by [[TSMC]] in Taiwan using the 28 nm process. Compared to the 40 nm technology from the past, this manufacturing process allowed a 20 percent boost in performance while drawing less power.<ref>{{Cite web|url=https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf|title=Kepler TM GK110|date=2012|publisher=NVIDIA Corporation|access-date=August 3, 2016|url-status=live|archive-url=https://web.archive.org/web/20161011194501/https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf|archive-date=October 11, 2016}}</ref><ref>{{Cite web|url=https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm|title=Taiwan Semiconductor Manufacturing Company Limited|website=www.tsmc.com|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160810092021/https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm|archive-date=2016-08-10}}</ref> [[Virtual reality headset]]s have high system requirements; manufacturers recommended the GTX 970 and the R9 290X or better at the time of their release.<ref>{{Cite web|url=https://www.octopusrift.com/building-a-vive-pc/|title=Building a PC for the HTC Vive|date=2016-06-16|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160729024408/https://www.octopusrift.com/building-a-vive-pc/|archive-date=2016-07-29}}</ref><ref>{{Cite web|url=https://www.vive.com/ready/|title=VIVE Ready Computers|publisher=Vive|access-date=2021-07-30|url-status=live|archive-url=https://web.archive.org/web/20160224182407/https://www.htcvive.com/us/product-optimized/|archive-date=2016-02-24}}</ref> Cards based on the [[Pascal (microarchitecture)|Pascal]] microarchitecture were released in 2016. The [[GeForce 10 series]] of cards are of this generation of graphics cards. They are made using the 16 nm manufacturing process which improves upon previous microarchitectures.<ref>{{Cite web|url=https://www.pcworld.com/article/3052312/components-graphics/nvidias-monstrous-pascal-gpu-is-packed-with-cutting-edge-tech-and-15-billion-transistors.html|title=Nvidia's monstrous Pascal GPU is packed with cutting-edge tech and 15 billion transistors|date=5 April 2016|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160731220844/https://www.pcworld.com/article/3052312/components-graphics/nvidias-monstrous-pascal-gpu-is-packed-with-cutting-edge-tech-and-15-billion-transistors.html|archive-date=2016-07-31}}</ref> Nvidia released one non-consumer card under the new [[Volta (microarchitecture)|Volta]] architecture, the Titan V. Changes from the Titan XP, Pascal's high-end card, include an increase in the number of CUDA cores, the addition of tensor cores, and [[High Bandwidth Memory|HBM2]]. Tensor cores are designed for deep learning, while high-bandwidth memory is on-die, stacked, lower-clocked memory that offers an extremely wide memory bus. To emphasize that the Titan V is not a gaming card, Nvidia removed the "GeForce GTX" suffix it adds to consumer gaming cards. In 2018, Nvidia launched the RTX 20 series GPUs that added ray-tracing cores to GPUs, improving their performance on lighting effects.<ref>{{cite web |last1=Sarkar |first1=Samit |title=Nvidia RTX 2070, RTX 2080, RTX 2080 Ti GPUs revealed: specs, price, release date |url=https://www.polygon.com/2018/8/20/17760038/nvidia-geforce-rtx-2080-ti-2070-specs-release-date-price-turing |website=Polygon |date=20 August 2018 |access-date=11 September 2019}}</ref> [[Polaris 11]] and [[Polaris 10]] GPUs from AMD are fabricated by a 14 nm process. Their release resulted in a substantial increase in the performance per watt of AMD video cards.<ref>{{Cite web|url=https://wccftech.com/amd-unveils-polaris-11-10-gpu/|title=AMD RX 480, 470 & 460 Polaris GPUs To Deliver The 'Most Revolutionary Jump In Performance' Yet|date=2016-01-16|language=en-US|access-date=2016-08-03|url-status=live|archive-url=https://web.archive.org/web/20160801225420/https://wccftech.com/amd-unveils-polaris-11-10-gpu/|archive-date=2016-08-01}}</ref> AMD also released the Vega GPU series for the high end market as a competitor to Nvidia's high end Pascal cards, also featuring HBM2 like the Titan V. In 2019, AMD released the successor to their [[Graphics Core Next]] (GCN) microarchitecture/instruction set. Dubbed RDNA, the first product featuring it was the [[Radeon RX 5000 series]] of video cards.<ref name="amd-official-press-release-computex">AMD press release: {{cite web|url=https://www.amd.com/en/press-releases/2019-05-26-amd-announces-next-generation-leadership-products-computex-2019-keynote|title=AMD Announces Next-Generation Leadership Products at Computex 2019 Keynote |publisher=AMD |access-date=October 5, 2019}}</ref> The company announced that the successor to the RDNA microarchitecture would be incremental (a "refresh"). AMD unveiled the [[Radeon RX 6000 series]], its RDNA 2 graphics cards with support for hardware-accelerated ray tracing.<ref>{{cite web|url=https://www.tomshardware.com/news/amds-navi-to-be-refreshed-with-next-gen-rdna-architecture-in-2020|title=AMD to Introduce New Next-Gen RDNA GPUs in 2020, Not a Typical 'Refresh' of Navi|date=2020-01-29|website=[[Tom's Hardware]]|access-date=2020-02-08}} * {{cite web|url=https://www.tweaktown.com/news/75066/amd-to-reveal-next-gen-big-navi-rdna-2-graphics-cards-on-october-28/index.html|title=AMD to reveal next-gen Big Navi RDNA 2 graphics cards on October 28|last=Garreffa|first=Anthony|work=TweakTown|date=September 9, 2020|access-date=September 9, 2020}} * {{cite web|url=https://www.theverge.com/2020/9/9/21429127/amd-zen-3-cpu-big-navi-gpu-events-october|title=AMD's next-generation Zen 3 CPUs and Radeon RX 6000 'Big Navi' GPU will be revealed next month|last=Lyles|first=Taylor|work=The Verge|date=September 9, 2020|access-date=September 10, 2020}}</ref> The product series, launched in late 2020, consisted of the RX 6800, RX 6800 XT, and RX 6900 XT.<ref>{{cite web|url=https://www.anandtech.com/show/16150/amd-teases-radeon-rx-6000-card-performance-numbers-aiming-for-3080|title=AMD Teases Radeon RX 6000 Card Performance Numbers: Aiming For 3080?|website=[[AnandTech]] |date=2020-10-08|access-date=2020-10-25}} * {{cite web|url=https://www.anandtech.com/show/16077/amd-announces-ryzen-zen-3-and-radeon-rdna2-presentations-for-october-a-new-journey-begins|title=AMD Announces Ryzen 'Zen 3' and Radeon 'RDNA2' Presentations for October: A New Journey Begins|website=[[AnandTech]]|date=2020-09-09|access-date=2020-10-25}}</ref><ref name="RDNA2InfinityCache">{{cite web|url=https://www.eurogamer.net/articles/digitalfoundry-2020-10-28-amd-unveils-three-radeon-6000-graphics-cards-with-ray-tracing-and-impressive-performance|title=AMD unveils three Radeon 6000 graphics cards with ray tracing and RTX-beating performance|last=Judd|first=Will|work=Eurogamer|date=October 28, 2020|access-date=October 28, 2020}}</ref> The RX 6700 XT, which is based on Navi 22, was launched in early 2021.<ref>{{Cite web|last=Mujtaba|first=Hassan|date=2020-11-30|title=AMD Radeon RX 6700 XT 'Navi 22 GPU' Custom Models Reportedly Boost Up To 2.95 GHz|url=https://wccftech.com/amd-radeon-rx-6700-xt-custom-models-boost-up-to-2-95-ghz-220w-tgp/|access-date=2020-12-03|website=Wccftech|language=en-US}} * {{Cite web|last=Tyson|first=Mark|date=December 3, 2020|title=AMD CEO keynote scheduled for CES 2020 on 12th January|url=https://hexus.net/tech/news/industry/147068-amd-ceo-keynote-scheduled-ces-2020-12th-january/|access-date=2020-12-03|website=HEXUS}} * {{cite web|url=https://www.anandtech.com/show/16402/amd-to-launch-midrange-rdna-2-desktop-graphics-in-first-half-2021|title=AMD to Launch Mid-Range RDNA 2 Desktop Graphics in First Half 2021|last=Cutress|first=Ian|work=AnandTech|date=January 12, 2021|access-date=January 4, 2021}}</ref> The [[PlayStation 5]] and [[Xbox Series X and Series S]] were released in 2020; they both use GPUs based on the [[RDNA 2]] microarchitecture with incremental improvements and different GPU configurations in each system's implementation.<ref name="RDNA2PS5Console">{{Cite web|url=https://hothardware.com/news/sony-playstation-5-independent-teardown-ifixit|title=Sony PS5 Gets A Full Teardown Detailing Its RDNA 2 Guts And Glory|last=Funk|first=Ben|website=Hot Hardware|date=December 12, 2020|access-date=January 3, 2021|archive-date=December 12, 2020|archive-url=https://web.archive.org/web/20201212165054/https://hothardware.com/news/sony-playstation-5-independent-teardown-ifixit|url-status=dead}}</ref><ref>{{cite web|url=https://www.theverge.com/2020/3/18/21183181/sony-ps5-playstation-5-specs-details-hardware-processor-8k-ray-tracing|title=Sony reveals full PS5 hardware specifications|last=Gartenberg|first=Chaim|work=[[The Verge]]|date=March 18, 2020|access-date=January 3, 2021}}</ref><ref name="RDNA2XboxConsoles">{{Cite web|url=https://www.anandtech.com/show/15546/microsoft-drops-more-xbox-series-x-tech-specs-zen-2-rdna-2-12-tflops-gpu-hdmi-21-a-custom-ssd|title=Microsoft Drops More Xbox Series X Tech Specs: Zen 2 + RDNA 2, 12 TFLOPs GPU, HDMI 2.1, & a Custom SSD|last=Smith|first=Ryan|website=AnandTech|access-date=2020-03-19}}</ref> [[Intel]] first [[List of Intel graphics processing units|entered the GPU market]] in the late 1990s, but produced lackluster 3D accelerators compared to the competition at the time. Rather than attempting to compete with the high-end manufacturers Nvidia and ATI/AMD, they began integrating [[Intel Graphics Technology]] GPUs into motherboard chipsets, beginning with the [[Intel 810]] for the Pentium III, and later into CPUs. They began with the [[Bonnell (microarchitecture)#Pineview|Intel Atom 'Pineview']] laptop processor in 2009, continuing in 2010 with desktop processors in the first generation of the [[Intel Core]] line and with contemporary Pentiums and Celerons. This resulted in a large nominal market share, as the majority of computers with an Intel CPU also featured this embedded graphics processor. These generally lagged behind discrete processors in performance. Intel re-entered the discrete GPU market in 2022 with its [[Intel Arc|Arc]] series, which competed with the then-current GeForce 30 series and Radeon 6000 series cards at competitive prices.{{cn|date=May 2023}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)