Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gudermannian function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Argument-addition identities == By combining [[hyperbolic functions#Sums of arguments|hyperbolic]] and [[trigonometric functions#Sum and difference formulas|circular]] argument-addition identities, :<math>\begin{align} \tanh(z + w) &= \frac{\tanh z + \tanh w}{1 + \tanh z \, \tanh w }, \\[10mu] \tan(z + w) &= \frac{\tan z + \tan w }{1 - \tan z \, \tan w }, \end{align}</math> with the [[#Circular–hyperbolic identities|circular–hyperbolic identity]], :<math> \tan \tfrac12 (\operatorname{gd} z) = \tanh \tfrac12 z, </math> we have the Gudermannian argument-addition identities: :<math>\begin{align} \operatorname{gd}(z + w) &= 2 \arctan \frac {\tan \tfrac12(\operatorname{gd} z) + \tan\tfrac12(\operatorname{gd} w)} {1 + \tan\tfrac12(\operatorname{gd} z) \, \tan\tfrac12(\operatorname{gd} w)}, \\[12mu] \operatorname{gd}^{-1}(z + w) &= 2 \operatorname{artanh} \frac {\tanh\tfrac12(\operatorname{gd}^{-1} z) + \tanh\tfrac12(\operatorname{gd}^{-1} w)} {1 - \tanh\tfrac12(\operatorname{gd}^{-1} z) \, \tanh\tfrac12(\operatorname{gd}^{-1} w)}. \end{align}</math> Further argument-addition identities can be written in terms of other circular functions,<ref>{{harvp|Cayley|1862}} [https://archive.org/details/londonedinburg4241862lond/page/21 p. 21]</ref> but they require greater care in choosing branches in inverse functions. Notably, :<math>\begin{align} \operatorname{gd}(z + w) &= u + v, \quad \text{where}\ \tan u = \frac{\sinh z}{\cosh w},\ \tan v = \frac{\sinh w}{\cosh z}, \\[10mu] \operatorname{gd}^{-1}(z + w) &= u + v, \quad \text{where}\ \tanh u = \frac{\sin z}{\cos w},\ \tanh v = \frac{\sin w}{\cos z}, \end{align}</math> which can be used to derive the [[Gudermannian function#Complex values|per-component computation]] for the complex Gudermannian and inverse Gudermannian.<ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/180 pp. 180–183]</ref> In the specific case <math display=inline>z = w,</math> double-argument identities are :<math>\begin{align} \operatorname{gd}(2z) &= 2 \arctan (\sin(\operatorname{gd} z)), \\[5mu] \operatorname{gd}^{-1}(2z) &= 2 \operatorname{artanh}(\sinh(\operatorname{gd}^{-1}z)). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)