Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert's fourth problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hilbert's geometry === [[Image:Gilbert metric.svg|thumb|Hilbert's metric]] Let <math>U\subset (\mathbb{E}^{n+1}, \| \cdot \|_{\mathbb{E}})</math> be a bounded open convex set with the boundary of class ''C<sup>2</sup>'' and positive normal curvatures. Similarly to the Lobachevsky space, the hypersurface <math>\partial U</math> is called the absolute of Hilbert's geometry.<ref>{{cite journal | last1=Hilbert | first1=David | authorlink1=David Hilbert | title=Uber die gerade Linie als kürzeste Verbindung zweier Punkte | journal=Mathematische Annalen | volume=46 | date=1895 | pages=91–96 | doi=10.1007/BF02096204 | doi-access=free}}</ref> Hilbert's distance (see fig.) is defined by : <math>d_U(p, q)=\frac{1}{2} \ln \frac{\|q-q_1\|_E}{\|q-p_1\|_E}\times \frac{\|p-p_1\|_E}{\|p-q_1\|_E}.</math> [[Image:Finsler metric.svg|thumb|Hilbert–Finsler metric]] The distance <math>d_{U}</math> induces the '''Hilbert–Finsler metric''' <math>F_{U}</math> on ''U''. For any <math>x\in U</math> and <math>y\in T_{x}U</math> (see fig.), we have : <math>F_U(x, y)=\frac{1}{2}\|y\|_{\mathbb{E}} \left( \frac{1}{\|x-x_{+}\|_{\mathbb{E}}}+\frac{1}{\|x-x_{-}\|_{\mathbb{E}}} \right). </math> The metric is symmetric and flat. In 1895, Hilbert introduced this metric as a generalization of the Lobachevsky geometry. If the hypersurface <math>\partial U </math> is an ellipsoid, then we have the Lobachevsky geometry.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)