Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Index calculus algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The Index Calculus family== Index Calculus inspired a large family of algorithms. In finite fields <math>\mathbb{F}_{q} </math> with <math>q=p^n</math> for some prime <math>p</math>, the state-of-art algorithms are the Number Field Sieve for Discrete Logarithms, <math display="inline"> L_{q}\left[1/3,\sqrt[3]{64/9}\,\right]</math>, when <math> p </math> is large compared to <math>q</math>,<ref name="barbulescu2013thesis">{{cite thesis |type=PhD |last=Barbulescu |first=Razvan |date=2013 |title=Algorithms for discrete logarithm in finite fields |publisher=University of Lorraine |url=https://hal.univ-lorraine.fr/tel-01750438 }}</ref> the [[function field sieve]], <math display="inline">L_q\left[1/3,\sqrt[3]{32/9}\,\right]</math>,<ref name="barbulescu2013thesis"/> and Joux,<ref name="joux2013indexcalcverysmallchar">{{cite conference |last=Joux |first=Antoine |author-link=Antoine Joux |title=A new index calculus algorithm with complexity <math>L(1/4 + o(1))</math> in very small characteristic |url=https://link.springer.com/chapter/10.1007/978-3-662-43414-7_18 |editor-last1=Lange |editor-first1=Tanja |editor-link1=Tanja Lange |editor-last2=Lauter |editor-first2=Kristin |editor-link2=Kristin Lauter |editor-last3=Lisoněk |editor-first3=Petr |conference=Selected Areas in Cryptography—SAC 2013 |date=August 2013 |conference-url=https://link.springer.com/book/10.1007/978-3-662-43414-7 |volume=8282 |series=Lecture Notes in Computer Science |publisher=Springer |location=Burnaby, BC, Canada |isbn=978-3-662-43414-7 |pages=355–379 |doi=10.1007/978-3-662-43414-7_18 |doi-access=free |url-access=subscription }}</ref> <math>L_{q}\left[1/4+\varepsilon,c\right] </math> for <math>c>0</math>, when <math>p</math> is small compared to <math>q </math> and the Number Field Sieve in High Degree, <math>L_q[1/3,c]</math> for <math>c>0</math> when <math>p </math> is middle-sided. Discrete logarithm in some families of elliptic curves can be solved in time <math>L_q\left[1/3,c\right]</math> for <math> c>0</math>, but the general case remains exponential.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)