Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infimum and supremum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Infima and suprema of real numbers == In [[Mathematical analysis|analysis]], infima and suprema of subsets <math>S</math> of the [[real numbers]] are particularly important. For instance, the negative [[real number]]s do not have a greatest element, and their supremum is <math>0</math> (which is not a negative real number).<ref name=BabyRudin /> The [[completeness of the real numbers]] implies (and is equivalent to) that any bounded nonempty subset <math>S</math> of the real numbers has an infimum and a supremum. If <math>S</math> is not bounded below, one often formally writes <math>\inf_{} S = -\infty.</math> If <math>S</math> is [[Empty set|empty]], one writes <math>\inf_{} S = +\infty.</math> ===Properties=== If <math>A</math> is any set of real numbers then <math>A \neq \varnothing</math> if and only if <math>\sup A \geq \inf A,</math> and otherwise <math>-\infty = \sup \varnothing < \inf \varnothing = \infty.</math>{{sfn|Rockafellar|Wets|2009|pp=1-2}} '''Set inclusion''' If <math>A \subseteq B</math> are sets of real numbers then <math>\inf A \geq \inf B</math> (if <math>A = \varnothing</math> this reads as <math>\inf B \le \infty</math>) and <math>\sup A \leq \sup B.</math> '''Image under functions''' If <math>f \colon \mathbb{R} \to \mathbb{R}</math> is a nonincreasing function, then <math>f (\inf(S)) \le \inf (f (S))</math> and <math>\sup(f(S))</math>, where the image is defined as <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math> '''Identifying infima and suprema''' If the infimum of <math>A</math> exists (that is, <math>\inf A</math> is a real number) and if <math>p</math> is any real number then <math>p = \inf A</math> if and only if <math>p</math> is a lower bound and for every <math>\epsilon > 0</math> there is an <math>a_\epsilon \in A</math> with <math>a_\epsilon < p + \epsilon.</math> Similarly, if <math>\sup A</math> is a real number and if <math>p</math> is any real number then <math>p = \sup A</math> if and only if <math>p</math> is an upper bound and if for every <math>\epsilon > 0</math> there is an <math>a_\epsilon \in A</math> with <math>a_\epsilon > p - \epsilon.</math> '''Relation to limits of sequences''' If <math>S \neq \varnothing</math> is any non-empty set of real numbers then there always exists a non-decreasing sequence <math>s_1 \leq s_2 \leq \cdots</math> in <math>S</math> such that <math>\lim_{n \to \infty} s_n = \sup S.</math> Similarly, there will exist a (possibly different) non-increasing sequence <math>s_1 \geq s_2 \geq \cdots</math> in <math>S</math> such that <math>\lim_{n \to \infty} s_n = \inf S.</math> In particular, the infimum and supremum of a set belong to its [[Closure (topology)|closure]] if <math>\inf S \in \mathbb{R}</math> then <math>\inf S \in \bar{S}</math> and if <math>\sup S \in \mathbb{R}</math> then <math>\sup S \in \bar{S}</math> Expressing the infimum and supremum as a limit of a such a sequence allows theorems from various branches of mathematics to be applied. Consider for example the well-known fact from [[topology]] that if <math>f</math> is a [[Continuous function (topology)|continuous function]] and <math>s_1, s_2, \ldots</math> is a sequence of points in its domain that converges to a point <math>p,</math> then <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> necessarily converges to <math>f(p).</math> It implies that if <math>\lim_{n \to \infty} s_n = \sup S</math> is a real number (where all <math>s_1, s_2, \ldots</math> are in <math>S</math>) and if <math>f</math> is a continuous function whose domain contains <math>S</math> and <math>\sup S,</math> then <math display=block>f(\sup S) = f\left(\lim_{n \to \infty} s_n\right) = \lim_{n \to \infty} f\left(s_n\right),</math> which (for instance) guarantees<ref group=note>Since <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> is a sequence in <math>f(S)</math> that converges to <math>f(\sup S),</math> this guarantees that <math>f(\sup S)</math> belongs to the [[Closure (topology)|closure]] of <math>f(S).</math></ref> that <math>f(\sup S)</math> is an [[adherent point]] of the set <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math> If in addition to what has been assumed, the continuous function <math>f</math> is also an increasing or [[non-decreasing function]], then it is even possible to conclude that <math>\sup f(S) = f(\sup S).</math> This may be applied, for instance, to conclude that whenever <math>g</math> is a real (or [[Complex number|complex]]) valued function with domain <math>\Omega \neq \varnothing</math> whose [[sup norm]] <math>\|g\|_\infty \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \sup_{x \in \Omega} |g(x)|</math> is finite, then for every non-negative real number <math>q,</math> <math display=block>\|g\|_\infty^q ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\sup_{x \in \Omega} |g(x)|\right)^q = \sup_{x \in \Omega} \left(|g(x)|^q\right)</math> since the map <math>f : [0, \infty) \to \R</math> defined by <math>f(x) = x^q</math> is a continuous non-decreasing function whose domain <math>[0, \infty)</math> always contains <math>S := \{|g(x)| : x \in \Omega\}</math> and <math>\sup S \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \|g\|_\infty.</math> Although this discussion focused on <math>\sup,</math> similar conclusions can be reached for <math>\inf</math> with appropriate changes (such as requiring that <math>f</math> be non-increasing rather than non-decreasing). Other [[Norm (mathematics)|norms]] defined in terms of <math>\sup</math> or <math>\inf</math> include the [[weak Lp space|weak <math>L^{p,w}</math> space]] norms (for <math>1 \leq p < \infty</math>), the norm on [[Lp space|Lebesgue space]] <math>L^\infty(\Omega, \mu),</math> and [[operator norm]]s. Monotone sequences in <math>S</math> that converge to <math>\sup S</math> (or to <math>\inf S</math>) can also be used to help prove many of the formula given below, since addition and multiplication of real numbers are continuous operations. ===Arithmetic operations on sets=== The following formulas depend on a notation that conveniently generalizes arithmetic operations on sets. Throughout, <math>A, B \subseteq \R</math> are sets of real numbers. '''Sum of sets''' The [[Minkowski sum]] of two sets <math>A</math> and <math>B</math> of real numbers is the set <math display=block>A + B ~:=~ \{a + b : a \in A, b \in B\}</math> consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if <math>A \ne \varnothing \ne B</math> <math display=block>\inf (A + B) = (\inf A) + (\inf B)</math> and <math display=block>\sup (A + B) = (\sup A) + (\sup B).</math> '''Product of sets''' The multiplication of two sets <math>A</math> and <math>B</math> of real numbers is defined similarly to their Minkowski sum: <math display=block>A \cdot B ~:=~ \{a \cdot b : a \in A, b \in B\}.</math> If <math>A</math> and <math>B</math> are nonempty sets of positive real numbers then <math>\inf (A \cdot B) = (\inf A) \cdot (\inf B)</math> and similarly for suprema <math>\sup (A \cdot B) = (\sup A) \cdot (\sup B).</math><ref name="zakon">{{cite book|title=Mathematical Analysis I|first=Elias|last=Zakon|pages=39β42|publisher=Trillia Group|date=2004|url=http://www.trillia.com/zakon-analysisI.html}}</ref> '''Scalar product of a set''' The product of a real number <math>r</math> and a set <math>B</math> of real numbers is the set <math display=block>r B ~:=~ \{r \cdot b : b \in B\}.</math> If <math>r > 0</math> then <math display=block>\inf (r \cdot A) = r (\inf A) \quad \text{ and } \quad \sup (r \cdot A) = r (\sup A),</math> while if <math>r < 0</math> then <math display=block>\inf (r \cdot A) = r (\sup A) \quad \text{ and } \quad \sup (r \cdot A) = r (\inf A).</math> In the case <math>r = 0</math>, one has, if <math>A \ne \varnothing</math> <math display=block> \inf (0 \cdot A) = 0 \quad \text{ and } \quad \sup (0 \cdot A) = 0 </math> Using <math>r = -1</math> and the notation <math display=inline>-A := (-1) A = \{- a : a \in A\},</math> it follows that, <math display=block>\inf (- A) = - \sup A \quad \text{ and } \quad \sup (- A) = - \inf A.</math> '''Multiplicative inverse of a set''' For any set <math>S</math> that does not contain <math>0,</math> let <math display=block>\frac{1}{S} ~:=\; \left\{\tfrac{1}{s} : s \in S\right\}.</math> If <math>S \subseteq (0, \infty)</math> is non-empty then <math display=block>\frac{1}{\sup_{} S} ~=~ \inf_{} \frac{1}{S}</math> where this equation also holds when <math>\sup_{} S = \infty</math> if the definition <math>\frac{1}{\infty} := 0</math> is used.<ref group="note" name="DivisionByInfinityOr0">The definition <math>\tfrac{1}{\infty} := 0</math> is commonly used with the [[extended real number]]s; in fact, with this definition the equality <math>\tfrac{1}{\sup_{} S} = \inf_{} \tfrac{1}{S}</math> will also hold for any non-empty subset <math>S \subseteq (0, \infty].</math> However, the notation <math>\tfrac{1}{0}</math> is usually left undefined, which is why the equality <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}</math> is given only for when <math>\inf_{} S > 0.</math></ref> This equality may alternatively be written as <math>\frac{1}{\displaystyle\sup_{s \in S} s} = \inf_{s \in S} \tfrac{1}{s}.</math> Moreover, <math>\inf_{} S = 0</math> if and only if <math>\sup_{} \tfrac{1}{S} = \infty,</math> where if<ref group=note name="DivisionByInfinityOr0" /> <math>\inf_{} S > 0,</math> then <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)