Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal strain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Principal strains=== It can be shown that it is possible to find a coordinate system (<math>\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3</math>) in which the components of the strain tensor are <math display="block"> \underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix} \varepsilon_{1} & 0 & 0 \\ 0 & \varepsilon_{2} & 0 \\ 0 & 0 & \varepsilon_{3} \end{bmatrix} \quad \implies \quad \boldsymbol{\varepsilon} = \varepsilon_{1} \mathbf{n}_1\otimes\mathbf{n}_1 + \varepsilon_{2} \mathbf{n}_2\otimes\mathbf{n}_2 + \varepsilon_{3} \mathbf{n}_3\otimes\mathbf{n}_3 </math> The components of the strain tensor in the (<math>\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3</math>) coordinate system are called the '''principal strains''' and the directions <math>\mathbf{n}_i</math> are called the directions of principal strain. Since there are no shear strain components in this coordinate system, the principal strains represent the maximum and minimum stretches of an elemental volume. If we are given the components of the strain tensor in an arbitrary orthonormal coordinate system, we can find the principal strains using an [[eigenvalue decomposition]] determined by solving the system of equations <math display="block"> (\underline{\underline{\boldsymbol{\varepsilon}}} - \varepsilon_i~\underline{\underline{\mathbf{I}}})~\mathbf{n}_i = \underline{\mathbf{0}} </math> This system of equations is equivalent to finding the vector <math>\mathbf{n}_i</math> along which the strain tensor becomes a pure stretch with no shear component.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)