Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer partition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Restricted partitions== In both combinatorics and number theory, families of partitions subject to various restrictions are often studied.<ref>{{cite journal|last=Alder|first=Henry L.|title=Partition identities - from Euler to the present|journal=American Mathematical Monthly|volume=76|year=1969|issue=7|pages=733β746|url=http://www.maa.org/programs/maa-awards/writing-awards/partition-identities-from-euler-to-the-present|doi=10.2307/2317861|jstor=2317861}}</ref> This section surveys a few such restrictions. ===Conjugate and self-conjugate partitions=== {{anchor|Conjugate partitions}} If we flip the diagram of the partition 6 + 4 + 3 + 1 along its [[main diagonal]], we obtain another partition of 14: {| |- style="vertical-align:top; text-align:left;" | [[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:RedDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]] | style="vertical-align:middle;"| β | [[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:RedDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]] |- style="vertical-align:top; text-align:center;" | 6 + 4 + 3 + 1 | = | 4 + 3 + 3 + 2 + 1 + 1 |} By turning the rows into columns, we obtain the partition 4 + 3 + 3 + 2 + 1 + 1 of the number 14. Such partitions are said to be ''conjugate'' of one another.{{sfn|Hardy|Wright|2008|p=362}} In the case of the number 4, partitions 4 and 1 + 1 + 1 + 1 are conjugate pairs, and partitions 3 + 1 and 2 + 1 + 1 are conjugate of each other. Of particular interest are partitions, such as 2 + 2, which have themselves as conjugate. Such partitions are said to be ''self-conjugate''.{{sfn|Hardy|Wright|2008|p=368}} '''Claim''': The number of self-conjugate partitions is the same as the number of partitions with distinct odd parts. '''Proof (outline)''': The crucial observation is that every odd part can be "''folded''" in the middle to form a self-conjugate diagram: {| |- | style="vertical-align:top;"| [[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]] | style="vertical-align:top;"| β | style="vertical-align:top;"| [[File:RedDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|*]] |} One can then obtain a [[bijection]] between the set of partitions with distinct odd parts and the set of self-conjugate partitions, as illustrated by the following example: {| |- | valign="top" | [[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]] <br /> [[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]] <br /> [[File:BlackDot.svg|16px|x]][[File:BlackDot.svg|16px|x]][[File:BlackDot.svg|16px|x]] | style="vertical-align:middle;"| β | valign="top" | [[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]][[File:GrayDot.svg|16px|o]]<br />[[File:GrayDot.svg|16px|o]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]][[File:RedDot.svg|16px|*]]<br />[[File:GrayDot.svg|16px|o]][[File:RedDot.svg|16px|*]][[File:BlackDot.svg|16px|x]][[File:BlackDot.svg|16px|x]]<br />[[File:GrayDot.svg|16px|o]][[File:RedDot.svg|16px|*]][[File:BlackDot.svg|16px|x]]<br />[[File:GrayDot.svg|16px|o]][[File:RedDot.svg|16px|*]] |- style="vertical-align:top; text-align:center;" | 9 + 7 + 3 | = | 5 + 5 + 4 + 3 + 2 |- style="vertical-align:top; text-align:center;" | Dist. odd | | self-conjugate |} ===Odd parts and distinct parts {{anchor|Euler's partition theorem}}=== Among the 22 partitions of the number 8, there are 6 that contain only ''odd parts'': * 7 + 1 * 5 + 3 * 5 + 1 + 1 + 1 * 3 + 3 + 1 + 1 * 3 + 1 + 1 + 1 + 1 + 1 * 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 Alternatively, we could count partitions in which no number occurs more than once. Such a partition is called a ''partition with distinct parts''. If we count the partitions of 8 with distinct parts, we also obtain 6: * 8 * 7 + 1 * 6 + 2 * 5 + 3 * 5 + 2 + 1 * 4 + 3 + 1 This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by ''q''(''n'').{{sfn|Hardy|Wright|2008|p=365}}<ref>Notation follows {{harvnb|Abramowitz| Stegun|1964|p=825}}</ref> This result was proved by [[Leonhard Euler]] in 1748<ref>{{cite book|author-link=George Andrews (mathematician)|last=Andrews|first=George E.|title=Number Theory|publisher=W. B. Saunders Company|location=Philadelphia|date=1971|pages= 149β50}}</ref> and later was generalized as [[Glaisher's theorem]]. For every type of restricted partition there is a corresponding function for the number of partitions satisfying the given restriction. An important example is ''q''(''n'') (partitions into distinct parts). The first few values of ''q''(''n'') are (starting with ''q''(0)=1): :1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ... {{OEIS|id=A000009}}. The [[generating function]] for ''q''(''n'') is given by<ref>{{harvnb|Abramowitz|Stegun|1964|p=825}}, 24.2.2 eq. I(B)</ref> :<math>\sum_{n=0}^\infty q(n)x^n = \prod_{k=1}^\infty (1+x^k) = \prod_{k=1}^\infty \frac {1}{1-x^{2k-1}} .</math> The [[pentagonal number theorem]] gives a recurrence for ''q'':<ref>{{harvnb|Abramowitz|Stegun|1964|p=826}}, 24.2.2 eq. II(A)</ref> :''q''(''k'') = ''a''<sub>''k''</sub> + ''q''(''k'' − 1) + ''q''(''k'' − 2) − ''q''(''k'' − 5) − ''q''(''k'' − 7) + ''q''(''k'' − 12) + ''q''(''k'' − 15) − ''q''(''k'' − 22) − ... where ''a''<sub>''k''</sub> is (−1)<sup>''m''</sup> if ''k'' = 3''m''<sup>2</sup> − ''m'' for some integer ''m'' and is 0 otherwise. ===Restricted part size or number of parts=== {{main|Triangle of partition numbers}} By taking conjugates, the number {{math|''p''<sub>''k''</sub>(''n'')}} of partitions of {{math|''n''}} into exactly ''k'' parts is equal to the number of partitions of {{math|''n''}} in which the largest part has size {{math|''k''}}. The function {{math|''p''<sub>''k''</sub>(''n'')}} satisfies the recurrence : {{math|1=''p''<sub>''k''</sub>(''n'') = ''p''<sub>''k''</sub>(''n'' β ''k'') + ''p''<sub>''k''β1</sub>(''n'' − 1)}} with initial values {{math|1=''p''<sub>0</sub>(0) = 1}} and {{math|1=''p''<sub>''k''</sub>(''n'') = 0}} if {{math|''n'' ≤ 0 or ''k'' ≤ 0}} and {{math|''n''}} and {{math|''k''}} are not both zero.<ref>Richard Stanley, ''Enumerative Combinatorics'', volume 1, second edition. Cambridge University Press, 2012. Chapter 1, section 1.7.</ref> One recovers the function ''p''(''n'') by :<math> p(n) = \sum_{k = 0}^n p_k(n). </math> One possible generating function for such partitions, taking ''k'' fixed and ''n'' variable, is : <math> \sum_{n \geq 0} p_k(n) x^n = x^k\prod_{i = 1}^k \frac{1}{1 - x^i}.</math> More generally, if ''T'' is a set of positive integers then the number of partitions of ''n'', all of whose parts belong to ''T'', has [[generating function]] :<math>\prod_{t \in T}(1-x^t)^{-1}.</math> This can be used to solve [[change-making problem]]s (where the set ''T'' specifies the available coins). As two particular cases, one has that the number of partitions of ''n'' in which all parts are 1 or 2 (or, equivalently, the number of partitions of ''n'' into 1 or 2 parts) is :<math>\left \lfloor \frac{n}{2}+1 \right \rfloor ,</math> and the number of partitions of ''n'' in which all parts are 1, 2 or 3 (or, equivalently, the number of partitions of ''n'' into at most three parts) is the nearest integer to (''n'' + 3)<sup>2</sup> / 12.<ref>{{cite book|last=Hardy|first=G.H.|title=Some Famous Problems of the Theory of Numbers|url=https://archive.org/details/in.ernet.dli.2015.84630|publisher=Clarendon Press|date=1920}}</ref> ===Partitions in a rectangle and Gaussian binomial coefficients=== {{Main|Gaussian binomial coefficient}} One may also simultaneously limit the number and size of the parts. Let {{math|''p''(''N'', ''M''; ''n'')}} denote the number of partitions of {{mvar|n}} with at most {{mvar|M}} parts, each of size at most {{mvar|N}}. Equivalently, these are the partitions whose Young diagram fits inside an {{math|''M'' Γ ''N''}} rectangle. There is a recurrence relation <math display=block>p(N,M;n) = p(N,M-1;n) + p(N-1,M;n-M)</math> obtained by observing that <math>p(N,M;n) - p(N,M-1;n)</math> counts the partitions of {{mvar|n}} into exactly {{mvar|M}} parts of size at most {{mvar|N}}, and subtracting 1 from each part of such a partition yields a partition of {{math|''n'' β ''M''}} into at most {{mvar|M}} parts.{{sfn|Andrews|1976|pp=33β34}} The Gaussian binomial coefficient is defined as: <math display=block>{k+\ell \choose \ell}_q = {k+\ell \choose k}_q = \frac{\prod^{k+\ell}_{j=1}(1-q^j)}{\prod^{k}_{j=1}(1-q^j)\prod^{\ell}_{j=1}(1-q^j)}.</math> The Gaussian binomial coefficient is related to the [[generating function]] of {{math|''p''(''N'', ''M''; ''n'')}} by the equality <math display=block>\sum^{MN}_{n=0}p(N,M;n)q^n = {M+N \choose M}_q.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)