Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse function theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A proof using successive approximation === To prove existence, it can be assumed after an affine transformation that <math>f(0)=0</math> and <math>f^\prime(0)=I</math>, so that <math> a=b=0</math>. By the [[Mean value theorem#Mean value theorem for vector-valued functions|mean value theorem for vector-valued functions]], for a differentiable function <math>u:[0,1]\to\mathbb R^m</math>, <math display="inline">\|u(1)-u(0)\|\le \sup_{0\le t\le 1} \|u^\prime(t)\|</math>. Setting <math>u(t)=f(x+t(x^\prime -x)) - x-t(x^\prime-x)</math>, it follows that :<math>\|f(x) - f(x^\prime) - x + x^\prime\| \le \|x -x^\prime\|\,\sup_{0\le t \le 1} \|f^\prime(x+t(x^\prime -x))-I\|.</math> Now choose <math>\delta>0</math> so that <math display="inline">\|f'(x) - I\| < {1\over 2}</math> for <math>\|x\|< \delta</math>. Suppose that <math>\|y\|<\delta/2</math> and define <math>x_n</math> inductively by <math>x_0=0</math> and <math> x_{n+1}=x_n + y - f(x_n)</math>. The assumptions show that if <math> \|x\|, \,\, \|x^\prime\| < \delta</math> then :<math>\|f(x)-f(x^\prime) - x + x^\prime\| \le \|x-x^\prime\|/2</math>. In particular <math>f(x)=f(x^\prime)</math> implies <math>x=x^\prime</math>. In the inductive scheme <math>\|x_n\| <\delta</math> and <math>\|x_{n+1} - x_n\| < \delta/2^n</math>. Thus <math>(x_n)</math> is a [[Cauchy sequence]] tending to <math>x</math>. By construction <math>f(x)=y</math> as required. To check that <math>g=f^{-1}</math> is C<sup>1</sup>, write <math>g(y+k) = x+h</math> so that <math>f(x+h)=f(x)+k</math>. By the inequalities above, <math>\|h-k\| <\|h\|/2</math> so that <math>\|h\|/2<\|k\| < 2\|h\|</math>. On the other hand, if <math>A=f^\prime(x)</math>, then <math>\|A-I\|<1/2</math>. Using the [[geometric series]] for <math>B=I-A</math>, it follows that <math>\|A^{-1}\| < 2</math>. But then :<math> {\|g(y+k) -g(y) - f^\prime(g(y))^{-1}k \| \over \|k\|} = {\|h -f^\prime(x)^{-1}[f(x+h)-f(x)]\| \over \|k\|} \le 4 {\|f(x+h) - f(x) -f^\prime(x)h\|\over \|h\|} </math> tends to 0 as <math>k</math> and <math>h</math> tend to 0, proving that <math>g</math> is C<sup>1</sup> with <math>g^\prime(y)=f^\prime(g(y))^{-1}</math>. The proof above is presented for a finite-dimensional space, but applies equally well for [[Banach space]]s. If an invertible function <math>f</math> is C<sup>k</sup> with <math>k>1</math>, then so too is its inverse. This follows by induction using the fact that the map <math>F(A)=A^{-1}</math> on operators is C<sup>k</sup> for any <math>k</math> (in the finite-dimensional case this is an elementary fact because the inverse of a matrix is given as the [[adjugate matrix]] divided by its [[determinant]]). <ref name="Hörmander" /><ref>{{cite book|title=Calcul Differentiel|language=fr|first=Henri|last= Cartan|author-link= Henri Cartan|publisher=[[Éditions Hermann|Hermann]]|year= 1971|isbn=978-0-395-12033-0 |pages=55–61}}</ref> The method of proof here can be found in the books of [[Henri Cartan]], [[Jean Dieudonné]], [[Serge Lang]], [[Roger Godement]] and [[Lars Hörmander]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)