Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Detailed example and explanation of the "plus or minus" symbol {{math|Β±}} ==== The solutions to <math>\cos \theta = x</math> and <math>\sec \theta = x</math> involve the "plus or minus" symbol <math>\,\pm,\,</math> whose meaning is now clarified. Only the solution to <math>\cos \theta = x</math> will be discussed since the discussion for <math>\sec \theta = x</math> is the same. We are given <math>x</math> between <math>-1 \leq x \leq 1</math> and we know that there is an angle <math>\theta</math> in some interval that satisfies <math>\cos \theta = x.</math> We want to find this <math>\theta.</math> The table above indicates that the solution is <math display="block">\,\theta = \pm \arccos x+2 \pi k\, \quad \text{ for some }k \in \Z</math> which is a shorthand way of saying that (at least) one of the following statement is true: <br /> #<math>\,\theta = \arccos x+2 \pi k\,</math> for some integer <math>k,</math> <br/>or #<math>\,\theta =-\arccos x+2 \pi k\,</math> for some integer <math>k.</math> As mentioned above, if <math>\,\arccos x = \pi\,</math> (which by definition only happens when <math>x = \cos \pi = -1</math>) then both statements (1) and (2) hold, although with different values for the integer <math>k</math>: if <math>K</math> is the integer from statement (1), meaning that <math>\theta = \pi+2 \pi K</math> holds, then the integer <math>k</math> for statement (2) is <math>K+1</math> (because <math>\theta = -\pi+2 \pi (1+K)</math>). However, if <math>x \neq -1</math> then the integer <math>k</math> is unique and completely determined by <math>\theta.</math> If <math>\,\arccos x = 0\,</math> (which by definition only happens when <math>x = \cos 0 = 1</math>) then <math>\,\pm\arccos x = 0\,</math> (because <math>\,+ \arccos x = +0 = 0\,</math> and <math>\,-\arccos x = -0 = 0\,</math> so in both cases <math>\,\pm \arccos x\,</math> is equal to <math>0</math>) and so the statements (1) and (2) happen to be identical in this particular case (and so both hold). Having considered the cases <math>\,\arccos x = 0\,</math> and <math>\,\arccos x = \pi,\,</math> we now focus on the case where <math>\,\arccos x \neq 0\,</math> and <math>\,\arccos x \neq \pi,\,</math> So assume this from now on. The solution to <math>\cos \theta = x</math> is still <math display="block">\,\theta = \pm \arccos x+2 \pi k\, \quad \text{ for some }k \in \Z</math> which as before is shorthand for saying that one of statements (1) and (2) is true. However this time, because <math>\,\arccos x \neq 0\,</math> and <math>\,0 < \arccos x < \pi,\,</math> statements (1) and (2) are different and furthermore, ''exactly one'' of the two equalities holds (not both). Additional information about <math>\theta</math> is needed to determine which one holds. For example, suppose that <math>x = 0</math> and that {{em|all}} that is known about <math>\theta</math> is that <math>\,-\pi \leq \theta \leq \pi\,</math> (and nothing more is known). Then <math display="block">\arccos x = \arccos 0 = \frac{\pi}{2}</math> and moreover, in this particular case <math>k = 0</math> (for both the <math>\,+\,</math> case and the <math>\,-\,</math> case) and so consequently, <math display="block">\theta ~=~ \pm \arccos x+2 \pi k ~=~ \pm \left(\frac{\pi}{2}\right)+2\pi (0) ~=~ \pm \frac{\pi}{2}.</math> This means that <math>\theta</math> could be either <math>\,\pi/2\,</math> or <math>\,-\pi/2.</math> Without additional information it is not possible to determine which of these values <math>\theta</math> has. An example of some additional information that could determine the value of <math>\theta</math> would be knowing that the angle is above the <math>x</math>-axis (in which case <math>\theta = \pi/2</math>) or alternatively, knowing that it is below the <math>x</math>-axis (in which case <math>\theta =-\pi/2</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)