Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ionization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Quantum mechanical description of ionization== The interaction of atoms and molecules with sufficiently strong laser pulses or with other charged particles leads to the ionization to singly or multiply charged ions. The ionization rate, i.e. the ionization probability in unit time, can be calculated using [[quantum mechanics]]. (There are classical methods available also, like the Classical Trajectory Monte Carlo Method (CTMC),<ref>{{Cite journal |last1=Abrines |first1=R. |last2=Percival |first2=I.C. |date=1966 |title=Classical theory of charge transfer and ionization of hydrogen atoms by protons |url=https://iopscience.iop.org/article/10.1088/0370-1328/88/4/306 |journal=Proceedings of the Physical Society |volume=88 |issue=4 |pages=861–872 |doi=10.1088/0370-1328/88/4/306|url-access=subscription }}</ref><ref>{{Cite journal |last=Schultz |first=D.R. |date=1989 |title=Comparison of single-electron removal processes in collisions of electrons, positrons, protons, and antiprotons with hydrogen and helium |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.2330 |journal=Phys. Rev. A |volume=41 |issue=5 |pages=2330–2334 |doi=10.1103/PhysRevA.40.2330|url-access=subscription }}</ref> but it is not overall accepted and often criticized by the community.) There are two quantum mechanical methods exist, [[Perturbation theory (quantum mechanics)|perturbative]] and non-perturbative methods like time-dependent coupled-channel or time independent [[close coupling]]<ref>{{Cite journal |last1=Abdurakhmanov |first1=I.B. |last2=Plowman |first2=C |last3=Kadyrov |first3=A.S. |last4=Bray |first4=I. |last5=Mukhamedzhanov |first5=A.M. |date=2020 |title=One-center close-coupling approach to two-center rearrangement collisions |url=https://iopscience.iop.org/article/10.1088/1361-6455/ab894a |journal=Journal of Physics B: Atomic, Molecular and Optical Physics |volume=53 |issue=14 |pages=145201 |doi=10.1088/1361-6455/ab894a|osti=1733342 |url-access=subscription }}</ref> methods where the wave function is expanded in a finite basis set. There are numerous options available e.g. B-splines,<ref>{{Cite journal |last=Martin |first=Fernando |date=1999 |title=Ionization and dissociation using B-splines: photoionization of the hydrogen molecule |url=https://iopscience.iop.org/article/10.1088/0953-4075/32/16/201 |journal=Journal of Physics B: Atomic, Molecular and Optical Physics |volume=32 |issue=16 |pages=R197–R231 |doi=10.1088/0953-4075/32/16/201|url-access=subscription }}</ref> generalized [[Sturm–Liouville theory|Sturmians]]<ref>{{Cite book |last=Avery |first=J. |title=Generalized Sturmians And Atomic Spectra |publisher=World Scientific Publishing |year=2006 |isbn=981-256-806-9}}</ref> or Coulomb wave packets.<ref>{{Cite journal |last1=Barna |first1=I.F. |last2=Grün |first2=N. |last3=Scheid |first3=W. |title=Coupled-channel study with Coulomb wave packets for ionization of helium in heavy ion collisions |url=https://link.springer.com/article/10.1140/epjd/e2003-00206-6 |journal=European Physical Journal D |date=2003 |volume=25 |issue=3 |pages=239–246 |doi=10.1140/epjd/e2003-00206-6|bibcode=2003EPJD...25..239B |url-access=subscription }}</ref><ref>{{Cite journal |last1=Abdurakhmanov |first1=I.B. |last2=Kadyrov |first2=A.S. |last3=Bray |first3=I |last4=Bartschat |first4=K. |date=2017 |title=Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.022702 |journal=Phys. Rev. A |volume=96 |issue=2 |pages=022702 |doi=10.1103/PhysRevA.96.022702|bibcode=2017PhRvA..96b2702A |hdl=10072/409310 |hdl-access=free }}</ref> Another non-perturbative method is to solve the corresponding Schrödinger equation fully numerically on a lattice.<ref>{{Cite journal |last1=Schultz |first1=D.R. |last2=Krstic |first2=P.S. |date=2003 |title=Ionization of helium by antiprotons: Fully correlated, four-dimensional lattice approach |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.022712 |journal=Physical Review A |volume=67 |issue=2 |pages=022712 |doi=10.1103/PhysRevA.67.022712|bibcode=2003PhRvA..67b2712S |url-access=subscription }}</ref> In general, the analytic solutions are not available, and the approximations required for manageable numerical calculations do not provide accurate enough results. However, when the laser intensity is sufficiently high, the detailed structure of the atom or molecule can be ignored and analytic solution for the ionization rate is possible. ===Tunnel ionization=== [[File:Tunnel ionization 3.png|thumb|upright=1.5|Combined potential of an atom and a uniform laser field. At distances {{nowrap|''r'' < ''r''{{sub|0}}}}, the potential of the laser can be neglected, while at distances with {{math|''r'' > ''r''{{sub|0}}}} the Coulomb potential is negligible compared to the potential of the laser field. The electron emerges from under the barrier at {{math|''r'' {{=}} ''R''{{sub|c}}}}. {{math|''E''{{sub|i}}}} is the ionization potential of the atom.]] [[Tunnel ionization]] is ionization due to [[quantum tunneling]]. In classical ionization, an electron must have enough energy to make it over the potential barrier, but quantum tunneling allows the electron simply to go through the potential barrier instead of going all the way over it because of the wave nature of the electron. The probability of an electron's tunneling through the barrier drops off exponentially with the width of the potential barrier. Therefore, an electron with a higher energy can make it further up the potential barrier, leaving a much thinner barrier to tunnel through and thus a greater chance to do so. In practice, tunnel ionization is observable when the atom or molecule is interacting with near-infrared strong laser pulses. This process can be understood as a process by which a bounded electron, through the absorption of more than one photon from the laser field, is ionized. This picture is generally known as multiphoton ionization (MPI). Keldysh<ref>{{cite journal |last=Keldysh |first=L. V. |date=1965 |url=http://www.jetp.ac.ru/cgi-bin/e/index/e/20/5/p1307?a=list |title=Ionization in the Field of a Strong Electromagnetic Wave|journal=Soviet Phys. JETP |page=1307|volume=20|issue=5}}</ref> modeled the MPI process as a transition of the electron from the ground state of the atom to the Volkov states.<ref>Volkov D M 1934 Z. Phys. 94 250</ref> In this model the perturbation of the ground state by the laser field is neglected and the details of atomic structure in determining the ionization probability are not taken into account. The major difficulty with Keldysh's model was its neglect of the effects of Coulomb interaction on the final state of the electron. As it is observed from figure, the Coulomb field is not very small in magnitude compared to the potential of the laser at larger distances from the nucleus. This is in contrast to the approximation made by neglecting the potential of the laser at regions near the nucleus. Perelomov et al.<ref>{{cite journal |last1=Perelomov |first1=A. M. |last2=Popov |first2=V. S. |last3=Terent'ev |first3=M. V. |date=1966 |journal=Soviet Phys. JETP |volume=23 |issue=5 |page=924 |url=http://www.jetp.ac.ru/cgi-bin/e/index/e/23/5/p924?a=list |title=Ionization of Atoms in an Alternating Electric Field |bibcode=1966JETP...23..924P |access-date=2013-08-12 |archive-date=2021-03-18 |archive-url=https://web.archive.org/web/20210318094804/http://www.jetp.ac.ru/cgi-bin/e/index/e/23/5/p924?a=list |url-status=dead }}</ref><ref>{{cite journal |last1=Perelomov |first1=A. M. |last2=Popov |first2=V. S. |last3=Terent'ev |first3=M. V. |date=1967 |journal=Soviet Phys. JETP |volume=24 |issue=1 |page=207 |url=http://www.jetp.ac.ru/cgi-bin/e/index/e/24/1/p207?a=list |title=Ionization of Atoms in an Alternating Electric Field: II |bibcode=1967JETP...24..207P |access-date=2013-08-12 |archive-date=2021-03-03 |archive-url=https://web.archive.org/web/20210303205015/http://www.jetp.ac.ru/cgi-bin/e/index/e/24/1/p207?a=list |url-status=dead }}</ref> included the Coulomb interaction at larger internuclear distances. Their model (which we call the PPT model) was derived for short range potential and includes the effect of the long range Coulomb interaction through the first order correction in the quasi-classical action. Larochelle et al.<ref>{{cite journal |last1=Larochelle |first1=S. |last2=Talebpour |first2=A. |last3=Chin |first3=S. L. |doi=10.1088/0953-4075/31/6/009 |url=http://slchin-symposium.copl.ulaval.ca/MPublication/154_JPB_031_1215.pdf |title=Coulomb effect in multiphoton ionization of rare-gas atoms |date=1998 |journal=Journal of Physics B: Atomic, Molecular and Optical Physics |volume=31 |issue=6 |page=1215 |bibcode=1998JPhB...31.1215L |s2cid=250870476 |url-status=dead |archive-url=https://web.archive.org/web/20141121115047/http://slchin-symposium.copl.ulaval.ca/MPublication/154_JPB_031_1215.pdf |archive-date=November 21, 2014 }}</ref> have compared the theoretically predicted ion versus intensity curves of rare gas atoms interacting with a Ti:Sapphire laser with experimental measurement. They have shown that the total ionization rate predicted by the PPT model fit very well the experimental ion yields for all rare gases in the intermediate regime of the Keldysh parameter. The rate of MPI on atom with an ionization potential <math> E_i </math> in a linearly polarized laser with frequency <math> \omega </math> is given by :<math>W_{PPT} = \left|C_{n^* l^*}\right|^2 \sqrt{\frac{6}{\pi}} f_{lm} E_i \left(\frac{2}{F} \left(2E_i\right)^{\frac{3}{2}}\right)^{2n^* - |m|- \frac{3}{2}} \left(1 + \gamma^2\right)^{\left|\frac{m}{2}\right|+ \frac{3}{4}} A_m (\omega, \gamma) e^{-\frac{2}{F}\left(2E_i\right)^{\frac{3}{2}} g\left(\gamma\right)} </math> where * <math> \gamma=\frac{\omega \sqrt{2E_i}}{F} </math> is the Keldysh parameter, * <math> n^*=\frac{\sqrt{2E_i}}{Z^2} </math>, * <math> F </math> is the peak electric field of the laser and * <math> l^*=n^* - 1 </math>. The coefficients <math> f_{lm} </math>, <math> g(\gamma) </math> and <math> C_{n^* l^*} </math> are given by :<math>\begin{align} f_{lm} &= \frac{(2l + 1)(l + |m|)!}{2^m |m|!(l - |m|)!} \\ g(\gamma) &= \frac{3}{2\gamma} \left(1 + \frac{1}{2\gamma^2} \sinh^{-1}(\gamma) - \frac{\sqrt{1 + \gamma^2}}{2\gamma}\right) \\ |C_{n^* l^*}|^2 &= \frac{2^{2n^*}}{n^* \Gamma(n^* + l^* + 1) \Gamma(n^* - l^*)} \end{align}</math> The coefficient <math> A_m (\omega, \gamma)</math> is given by :<math> A_m (\omega, \gamma) = \frac{4}{3\pi} \frac{1}{|m|!} \frac{\gamma^2}{1 + \gamma^2} \sum_{n>v}^\infty e^{-(n - v) \alpha(\gamma)} w_m \left(\sqrt{\frac{2\gamma}{\sqrt{1 + \gamma^2}} (n - v)}\right) </math> where :<math>\begin{align} w_m(x) &= e^{-x^2} \int_0^x (x^2 - y^2)^m e^{y^2}\,dy \\ \alpha(\gamma) &= 2\left(\sinh^{-1}(\gamma) - \frac{\gamma}{\sqrt{1 + \gamma^2}}\right) \\ v &= \frac{E_i}{\omega} \left(1 + \frac{2}{\gamma^2}\right) \end{align}</math> ====Quasi-static tunnel ionization==== The quasi-static tunneling (QST) is the ionization whose rate can be satisfactorily predicted by the ADK model,<ref>{{cite journal |last1=Ammosov |first1=M. V. |last2=Delone |first2=N. B. |last3=Krainov |first3=V. P. |date=1986 |journal=Soviet Phys. JETP |volume=64 |issue=6 |page=1191 |url=http://www.jetp.ac.ru/cgi-bin/e/index/e/64/6/p1191?a=list |title=Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field |bibcode=1986JETP...64.1191A |access-date=2013-08-12 |archive-date=2021-03-01 |archive-url=https://web.archive.org/web/20210301174150/http://www.jetp.ac.ru/cgi-bin/e/index/e/64/6/p1191?a=list |url-status=dead }}</ref> i.e. the limit of the PPT model when <math> \gamma </math> approaches zero.<ref name="SharifiTalebpour2010">{{cite journal |last1=Sharifi |first1=S. M. |last2=Talebpour |first2=A |last3=Yang |first3=J. |last4=Chin |first4=S. L. |title=Quasi-static tunnelling and multiphoton processes in the ionization of Ar and Xe using intense femtosecond laser pulses |journal=Journal of Physics B: Atomic, Molecular and Optical Physics |volume=43 |issue=15 |date=2010 |page=155601 |issn=0953-4075 |doi=10.1088/0953-4075/43/15/155601|bibcode=2010JPhB...43o5601S |s2cid=121014268 }}</ref> The rate of QST is given by :<math>W_{ADK} = \left|C_{n^* l^*}\right|^2 \sqrt{\frac{6}{\pi}} f_{lm} E_i \left(\frac{2}{F} \left(2E_i\right)^{\frac{3}{2}}\right)^{2n^* - |m|- \frac{3}{2}} e^{-\frac{2}{3F} \left(2E_i\right)^{\frac{3}{2}}} </math> As compared to <math>W_{PPT}</math> the absence of summation over n, which represent different [[above threshold ionization]] (ATI) peaks, is remarkable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)