Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Using elliptic integrals=== Equivalently, Jacobi's elliptic functions can be defined in terms of the [[theta function]]s.<ref>{{cite book |last1=Whittaker |first1=Edmund Taylor |authorlink1=Edmund T. Whittaker |last2=Watson |first2=George Neville |authorlink2=George N. Watson |date= 1927 |page=492 |edition=4th |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |publisher= Cambridge University Press}}</ref> With <math>z,\tau\in\mathbb{C}</math> such that <math>\operatorname{Im}\tau >0</math>, let :<math>\theta_1(z|\tau)=\displaystyle\sum_{n=-\infty}^\infty (-1)^{n-\frac12}e^{(2n+1)iz+\pi i\tau\left(n+\frac12\right)^2},</math> :<math>\theta_2(z|\tau)=\displaystyle\sum_{n=-\infty}^\infty e^{(2n+1)iz+\pi i\tau \left(n+\frac12\right)^2},</math> :<math>\theta_3(z|\tau)=\displaystyle\sum_{n=-\infty}^\infty e^{2niz+\pi i\tau n^2},</math> :<math>\theta_4(z|\tau)=\displaystyle\sum_{n=-\infty}^\infty (-1)^n e^{2niz+\pi i\tau n^2}</math> and let <math>\theta_2(\tau)=\theta_2(0|\tau)</math>, <math>\theta_3(\tau)=\theta_3(0|\tau)</math>, <math>\theta_4(\tau)=\theta_4(0|\tau)</math>. Then with <math>K=K(m)</math>, <math>K'=K(1-m)</math>, <math>\zeta=\pi u/(2K)</math> and <math>\tau=iK'/K</math>, :<math>\begin{align}\operatorname{sn}(u,m)&=\frac{\theta_3(\tau)\theta_1(\zeta|\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\ \operatorname{cn}(u,m)&=\frac{\theta_4(\tau)\theta_2(\zeta|\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\ \operatorname{dn}(u,m)&=\frac{\theta_4(\tau)\theta_3(\zeta|\tau)}{\theta_3(\tau)\theta_4(\zeta|\tau)}.\end{align}</math> The Jacobi zn function can be expressed by theta functions as well: :<math>\begin{align}\operatorname{zn}(u,m)&=\frac{\pi}{2K}\frac{\theta_{4}'(\zeta|\tau)}{\theta_{4}(\zeta|\tau)}\\ &=\frac{\pi}{2K}\frac{\theta_{3}'(\zeta|\tau)}{\theta_{3}(\zeta|\tau)}+m\frac{\operatorname{sn}(u,m)\operatorname{cn}(u,m)}{\operatorname{dn}(u,m)}\\ &=\frac{\pi}{2K}\frac{\theta_{2}'(\zeta|\tau)}{\theta_{2}(\zeta|\tau)}+\frac{\operatorname{dn}(u,m)\operatorname{sn}(u,m)}{\operatorname{cn}(u,m)}\\ &=\frac{\pi}{2K}\frac{\theta_{1}'(\zeta|\tau)}{\theta_{1}(\zeta|\tau)}-\frac{\operatorname{cn}(u,m)\operatorname{dn}(u,m)}{\operatorname{sn}(u,m)}\end{align}</math> where <math>'</math> denotes the partial derivative with respect to the first variable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)