Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kolmogorov complexity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Informal treatment=== There are some description languages which are optimal, in the following sense: given any description of an object in a description language, said description may be used in the optimal description language with a constant overhead. The constant depends only on the languages involved, not on the description of the object, nor the object being described. Here is an example of an optimal description language. A description will have two parts: * The first part describes another description language. * The second part is a description of the object in that language. In more technical terms, the first part of a description is a computer program (specifically: a compiler for the object's language, written in the description language), with the second part being the input to that computer program which produces the object as output. '''The invariance theorem follows:''' Given any description language ''L'', the optimal description language is at least as efficient as ''L'', with some constant overhead. '''Proof:''' Any description ''D'' in ''L'' can be converted into a description in the optimal language by first describing ''L'' as a computer program ''P'' (part 1), and then using the original description ''D'' as input to that program (part 2). The total length of this new description ''D′'' is (approximately): :|''D′'' | = |''P''| + |''D''| The length of ''P'' is a constant that doesn't depend on ''D''. So, there is at most a constant overhead, regardless of the object described. Therefore, the optimal language is universal [[up to]] this additive constant.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)