Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Binary trees=== Consider<ref>{{cite book |last1=Harris|first1= John |last2=Hirst |first2= Jeffry L.| last3= Mossinghoff| first3= Michael |date=2008 |title=Combinatorics and Graph Theory |publisher= Springer |pages=185β189 |isbn=978-0387797113}}</ref> the set <math>\mathcal{B}</math> of unlabelled [[binary tree]]s. An element of <math>\mathcal{B}</math> is either a leaf of size zero, or a root node with two subtrees. Denote by <math>B_n</math> the number of binary trees on <math>n</math> nodes. Removing the root splits a binary tree into two trees of smaller size. This yields the functional equation on the generating function <math>\textstyle B(z) = \sum_{n=0}^\infty B_n z^n\text{:}</math> :<math>B(z) = 1 + z B(z)^2.</math> Letting <math>C(z) = B(z) - 1</math>, one has thus <math>C(z) = z (C(z)+1)^2.</math> Applying the theorem with <math>\phi(w) = (w+1)^2</math> yields :<math> B_n = [z^n] C(z) = \frac{1}{n} [w^{n-1}] (w+1)^{2n} = \frac{1}{n} \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}.</math> This shows that <math>B_n</math> is the {{mvar|n}}th [[Catalan number]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)