Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange multiplier
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Single constraint=== Let <math>\ M\ </math> be a [[smooth manifold]] of dimension <math>\ m ~.</math> Suppose that we wish to find the stationary points <math>\ x\ </math> of a smooth function <math>\ f:M \to \mathbb{R}\ </math> when restricted to the submanifold <math>\ N\ </math> defined by <math>\ g(x) = 0\ ,</math> where <math>\ g:M \to \mathbb{R}\ </math> is a smooth function for which {{math|0}} is a [[regular value]]. Let <math>\ \operatorname{d}f\ </math> and <math>\ \operatorname{d}g\ </math> be the [[exterior derivative]]s of <math>\ f\ </math> and <math>\ g\ </math>. Stationarity for the restriction <math>\ f|_{N}\ </math> at <math>\ x\in N\ </math> means <math>\ \operatorname{d}(f|_N)_x=0 ~.</math> Equivalently, the kernel <math>\ \ker(\operatorname{d}f_x)\ </math> contains <math>\ T_x N = \ker(\operatorname{d}g_x) ~.</math> In other words, <math>\ \operatorname{d}f_x\ </math> and <math>\ \operatorname{d}g_x\ </math> are proportional 1-forms. For this it is necessary and sufficient that the following system of <math>\ \tfrac{1}{2}m(m-1)\ </math> equations holds: <math display="block"> \operatorname{d}f_x \wedge \operatorname{d}g_x = 0 \in \Lambda^2(T^{\ast}_x M) </math> where <math>\ \wedge\ </math> denotes the [[exterior algebra|exterior product]]. The stationary points <math>\ x\ </math> are the solutions of the above system of equations plus the constraint <math>\ g(x) = 0 ~.</math> Note that the <math>\ \tfrac{1}{2} m(m-1)\ </math> equations are not independent, since the left-hand side of the equation belongs to the subvariety of <math>\ \Lambda^{2}(T^{\ast}_x M)\ </math> consisting of [[exterior algebra|decomposable elements]]. In this formulation, it is not necessary to explicitly find the Lagrange multiplier, a number <math>\ \lambda\ </math> such that <math>\ \operatorname{d}f_x = \lambda \cdot \operatorname{d}g_x ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)