Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit cycle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == [[File:Hopfbifurcation.png|thumb|400px|Examples of limit cycles branching from fixed points near [[Hopf bifurcation]]. Trajectories in red, stable structures in dark blue, unstable structures in light blue. The parameter choice determines the occurrence and stability of limit cycles.]] Limit cycles are important in many scientific applications where systems with self-sustained oscillations are modelled. Some examples include: * Aerodynamic limit-cycle oscillations<ref>{{citation | last1 =Thomas| first1 =Jeffrey P.| last2 =Dowell| first2 =Earl H.| last3 =Hall| first3 =Kenneth C.| title =Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations| journal =AIAA Journal| volume =40| issue =4| pages =638| publisher =American Institute of Aeronautics and Astronautics| url=https://mems.duke.edu/files/mems/thomas/downloads/hblco.pdf| access-date = December 9, 2019 | bibcode =2002AIAAJ..40..638T | year =2002| doi =10.2514/2.1720}}</ref> * The [[Hodgkin–Huxley model]] for [[action potential]]s in [[neuron]]s. * The Sel'kov model of [[glycolysis]].<ref>{{Cite journal|last=Sel'kov|first=E. E.|date=1968|title=Self-Oscillations in Glycolysis 1. A Simple Kinetic Model|journal=European Journal of Biochemistry | language=en | volume=4|issue=1 |pages=79–86 |doi=10.1111/j.1432-1033.1968.tb00175.x | pmid=4230812|issn=1432-1033|doi-access=free}}</ref> * The daily oscillations in gene expression, hormone levels and body temperature of animals, which are part of the [[circadian rhythm]],<ref>{{Cite journal|last1=Leloup|first1=Jean-Christophe|last2=Gonze|first2=Didier|last3=Goldbeter|first3=Albert| date=1999-12-01|title=Limit Cycle Models for Circadian Rhythms Based on Transcriptional Regulation in Drosophila and Neurospora| journal=Journal of Biological Rhythms|language=en|volume=14|issue=6|pages=433–448| doi=10.1177/074873099129000948| pmid=10643740|s2cid=15074869|issn=0748-7304}}</ref><ref>{{Cite journal|last1=Roenneberg|first1=Till|last2=Chua|first2=Elaine Jane|last3=Bernardo|first3=Ric| last4=Mendoza|first4=Eduardo|date=2008-09-09|title=Modelling Biological Rhythms|journal=Current Biology|volume=18|issue=17| pages=R826–R835| doi=10.1016/j.cub.2008.07.017|pmid=18786388|s2cid=2798371|issn=0960-9822|doi-access=free|bibcode=2008CBio...18.R826R }}</ref> although this is contradicted by more recent evidence.<ref>{{cite journal |last1=Meijer |first1=JH |last2=Michel |first2=S |last3=Vanderleest |first3=HT |last4=Rohling |first4=JH |title=Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. |journal=The European Journal of Neuroscience |date=December 2010 |volume=32 |issue=12 |pages=2143–51 |doi=10.1111/j.1460-9568.2010.07522.x |pmid=21143668|s2cid=12754517 }}</ref> * The [[Cell migration|migration]] of [[cancer cell]]s in confining micro-environments follows limit cycle oscillations.<ref>{{Cite journal|last1=Brückner|first1=David B.|last2=Fink|first2=Alexandra|last3=Schreiber|first3=Christoph| last4=Röttgermann|first4=Peter J. F.|last5=Rädler|first5=Joachim| last6=Broedersz|first6=Chase P.|date=2019|title=Stochastic nonlinear dynamics of confined cell migration in two-state systems|journal=Nature Physics|language=en|volume=15| issue=6| pages=595–601| doi=10.1038/s41567-019-0445-4| issn=1745-2481|bibcode=2019NatPh..15..595B|s2cid=126819906}}</ref> * Some non-linear [[Electrical Circuit|electrical circuits]] exhibit limit cycle oscillations,<ref>{{Cite journal| last1=Ginoux| first1=Jean-Marc| last2=Letellier|first2=Christophe|date=2012-04-30|title=Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept|journal=Chaos: An Interdisciplinary Journal of Nonlinear Science|volume=22|issue=2| pages=023120| doi=10.1063/1.3670008|pmid=22757527|issn=1054-1500|arxiv=1408.4890|bibcode=2012Chaos..22b3120G|s2cid=293369}}</ref> which inspired the original [[Van der Pol oscillator|Van der Pol model]]. *The control of respiration and hematopoiesis, as appearing in the [[Mackey-Glass equations|Mackey-Glass]] equations.<ref>{{Cite journal|last1=Mackey|first1=M.|last2=Glass|first2=L|date=1977-07-15|title=Oscillation and chaos in physiological control systems |url=https://www.science.org/doi/10.1126/science.267326|journal=Science|language=en|volume=197 |issue=4300 |pages=287–289|doi=10.1126/science.267326|pmid=267326|bibcode=1977Sci...197..287M|issn=0036-8075|url-access=subscription}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)