Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== Some other important properties of limits of real sequences include the following: *When it exists, the limit of a sequence is unique.<ref name=":0" /> *Limits of sequences behave well with respect to the usual [[Arithmetic#Arithmetic operations|arithmetic operations]]. If <math>\lim_{n\to\infty} a_n</math> and <math>\lim_{n\to\infty} b_n</math> exists, then ::<math>\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n</math><ref name=":0" /> ::<math>\lim_{n\to\infty} c a_n = c \cdot \lim_{n\to\infty} a_n</math><ref name=":0" /> ::<math>\lim_{n\to\infty} (a_n \cdot b_n) = \left(\lim_{n\to\infty} a_n \right)\cdot \left( \lim_{n\to\infty} b_n \right)</math><ref name=":0" /> ::<math>\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim\limits_{n\to\infty} a_n}{\lim\limits_{n\to\infty} b_n}</math> provided <math>\lim_{n\to\infty} b_n \ne 0</math><ref name=":0" /> ::<math>\lim_{n\to\infty} a_n^p = \left( \lim_{n\to\infty} a_n \right)^p</math> *For any [[continuous function]] <math display="inline">f</math>, if <math>\lim_{n\to\infty}x_n</math> exists, then <math>\lim_{n\to\infty} f \left(x_n \right)</math> exists too. In fact, any real-valued [[function (mathematics)|function]] ''<math display="inline">f</math>'' is continuous if and only if it preserves the limits of sequences (though this is not necessarily true when using more general notions of continuity). *If <math>a_n \leq b_n</math> for all <math>n</math> greater than some <math>N</math>, then <math>\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n</math>. *([[Squeeze theorem]]) If <math>a_n \leq c_n \leq b_n</math> for all <math>n</math> greater than some <math>N</math>, and <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L</math>, then <math>\lim_{n\to\infty} c_n = L</math>. *([[Monotone convergence theorem]]) If <math>a_n</math> is [[Sequence#Bounded|bounded]] and [[Sequence#Increasing and decreasing|monotonic]] for all <math>n</math> greater than some <math>N</math>, then it is convergent. *A sequence is convergent if and only if every subsequence is convergent. *If every subsequence of a sequence has its own subsequence which converges to the same point, then the original sequence converges to that point. These properties are extensively used to prove limits, without the need to directly use the cumbersome formal definition. For example, once it is proven that <math>1/n \to 0</math>, it becomes easy to show—using the properties above—that <math>\frac{a}{b+\frac{c}{n}} \to \frac{a}{b}</math> (assuming that <math>b \ne 0</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)