Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Matrix norms induced by vector ''Ξ±''- and ''Ξ²''-norms=== We can generalize the above definition. Suppose we have vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math> for spaces <math>K^n</math> and <math>K^m</math> respectively; the corresponding operator norm is <math display="block"> \|A\|_{\alpha, \beta} = \sup\{ \|Ax\|_\beta : x \in K^n \text{ such that } \|x\|_\alpha \leq 1 \} </math> In particular, the <math>\|A\|_{p}</math> defined previously is the special case of <math>\|A\|_{p, p}</math>. In the special cases of <math>\alpha = 2</math> and <math>\beta=\infty</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{2,\infty}= \max_{1\le i\le m}\|A_{i:}\|_2, </math> where <math>A_{i:}</math> is the i-th row of matrix <math> A </math>. In the special cases of <math>\alpha = 1</math> and <math>\beta=2</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{1, 2} = \max_{1\le j\le n}\|A_{:j}\|_2, </math> where <math>A_{:j}</math> is the j-th column of matrix <math> A </math>. Hence, <math> \|A\|_{2,\infty} </math> and <math> \|A\|_{1, 2} </math> are the maximum row and column 2-norm of the matrix, respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)