Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maxwell's equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Ampère–Maxwell law === {{Main|Ampère's circuital law}} [[Image:Magnetic core.jpg|right|thumb|[[Magnetic-core memory]] (1954) is an application of [[Ampère's circuital law]]. Each [[magnetic core|core]] stores one [[bit]] of data.]] The original law of Ampère states that magnetic fields relate to [[electric current]]. [[Ampère–Maxwell law|Maxwell's addition]] states that magnetic fields also relate to changing electric fields, which Maxwell called [[displacement current]]. The integral form states that electric and displacement currents are associated with a proportional magnetic field along any enclosing curve. Maxwell's modification of Ampère's circuital law is important because the laws of Ampère and Gauss must otherwise be adjusted for static fields.<ref>J. D. Jackson, ''Classical Electrodynamics'', section 6.3</ref>{{clarify|date=May 2022}} As a consequence, it predicts that a rotating magnetic field occurs with a changing electric field.<ref name="VideoGlossary" /><ref>[https://books.google.com/books?id=1DZz341Pp50C&pg=PA809 ''Principles of physics: a calculus-based text''], by R. A. Serway, J. W. Jewett, page 809.</ref> A further consequence is the existence of self-sustaining [[electromagnetic waves]] which [[electromagnetic wave equation|travel through empty space]]. The speed calculated for electromagnetic waves, which could be predicted from experiments on charges and currents,<ref group="note">The quantity we would now call {{math|(''ε''{{sub|0}}''μ''{{sub|0}})<sup>−1/2</sup>}}, with units of velocity, was directly measured before Maxwell's equations, in an 1855 experiment by [[Wilhelm Eduard Weber]] and [[Rudolf Kohlrausch]]. They charged a [[leyden jar]] (a kind of [[capacitor]]), and measured the [[Coulomb's law|electrostatic force]] associated with the potential; then, they discharged it while measuring the [[Ampère's force law|magnetic force]] from the current in the discharge wire. Their result was {{val|3.107|e=8|ul=m/s}}, remarkably close to the speed of light. See Joseph F. Keithley, [https://books.google.com/books?id=uwgNAtqSHuQC&pg=PA115 ''The story of electrical and magnetic measurements: from 500 B.C. to the 1940s'', p. 115].</ref> matches the [[speed of light]]; indeed, [[light]] ''is'' one form of [[electromagnetic radiation]] (as are [[X-ray]]s, [[radio wave]]s, and others). Maxwell understood the connection between electromagnetic waves and light in 1861, thereby unifying the theories of [[electromagnetism]] and [[optics]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)